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 Preface 
 Combine unprecedented scientific and engineering advances in computing with the  aspirations  , 
 methods, and advances in statistics and operations research and we get the field of data 
 science, which broadly aims to extract  insights or  conclusions from data. Data science has 
 come into existence due to rapidly increasing capabilities to collect, process, and learn from 
 data, and to then apply what was learned with near and long-term benefits. 

 Even though the term “data science” only began to be used widely circa 2010, it has had 
 enormous effects on science, engineering, commerce, and society-at-large,  and the field has 
 explosively grown in vitality and impact by almost any metric:  Educational programs in the field 
 are blossoming as is employment. Social networks, online shopping, streaming entertainment, 
 internet search, new cancer treatments, many scientific discoveries, and semi-automated 
 driving are not solely due to data science, but it plays a huge and central role in each. Most 
 household name companies, whether in technology, pharma, logistics, finance, education, and 
 more, are heavily based on data science techniques. 

 However, as the field has grown, so have public concerns about it, including, but not limited to: 

 ●  Economic and fairness impacts on people and institutions 
 ●  Potential and actual mis-use of personal data 
 ●  Effects on harmony and governance 
 ●  Power consumption 
 ●  General mistrust 

 It seems every day we hear of a new concern garnering attention, whether well- or ill-founded. 
 Perhaps this is unsurprising as data science impacts so many aspects of life. Most innovations, 
 no matter how good they are, have unintended consequences. 

 Data science’s juxtaposition of opportunities and challenges gave rise to this book. By 
 illustrating and exploring the complex issues, we aim to provide both students and practitioners 
 the ability to use data science more effectively and more ethically. We offer a method for 
 critically evaluating data science’s applicability to particular problems, an extensive list of 
 examples, and a detailed discussion of the technical, societal, and ethical challenges that data 
 scientists must navigate. 

 The first part begins by delineating the field, explaining its historical roots in statistics, operations 
 research, and computing. We then start a thread on ethical considerations in applying data 
 science, which continues through later parts of the book. 

 Part II  then describes more than thirty data science  applications with three goals: 

 ●  Explaining aspects of how these applications work 
 ●  Illustrating the complexities in making them work  well 
 ●  Introducing a rubric that practitioners can apply to tease out those complexities when 

 applying data science to new problems 
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 Motivated by this rubric,  Part III  delves into the technical, contextual, and societal challenges of 
 data science, including privacy, security, the complexity in setting objectives, and many ethical 
 issues. 

 Part IV  describes societal concerns with the unintended  consequences of data science and then 
 makes recommendations for ameliorating some of them. We summarize our major points in 
 Chapter 20  . 

 Our journey will intermingle topics in data science, its technological underpinnings, and related 
 fields. In part, this is because data science arose through the confluence of diverse technical, 
 scientific, and commercial advances. We believe this breadth is needed to explain how data 
 science has become so important, how it solves problems, and what challenges exist. 

 As an example, topics like the growth in power of computation and computer security may not 
 seem to be primarily data science topics. But vast computing capability makes data science 
 feasible, while security issues force us to temper our enthusiasm with a deep consideration of 
 risk. We were guided in choosing topics for this book by a desire to enhance our and our 
 readers’ understanding of data science and its future. 

 We do not duplicate textbooks on the theory and application of data science techniques, but 
 instead address the breadth of data science, a field in which the revolutionary growth in 
 computing coupled with advances in statistics and operations research is changing almost all 
 aspects of society. We believe this material can be the basis for a full course, though we 
 recommend adding supplemental case studies and analyses. We also believe this book 
 provides important perspectives that are a useful addition to courses that focus on statistical, 
 operations research or computational techniques. We hope it will also be useful to 
 technically-oriented professionals wanting to apply data science to new problems. Finally, we 
 have tried to make the material accessible to non-experts, particularly in public policy or 
 business, who are interested in the benefits and challenges at the confluence of data science, 
 technology, and society. 

 This is a fast-moving field, and we anticipate providing additional commentary, questions, and 
 updates on the book’s website,  DataScienceInContext.com  . 

 Alfred Spector 
 Peter Norvig 
 Chris Wiggins 
 Jeannette M. Wing 

 April 2022 
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 Introduction 

 The quantity of data that is collected, processed, and employed has exploded in this millennium. 
 Many organizations now collect more data in a month than the total stored in the Library of 
 Congress. With the goal of gaining insight and drawing conclusions from this vast sea of 
 information, data science has fueled many of the vast benefits brought by the internet and 
 provided the business models that pay many of its costs. 

 Beyond the marvels of present data science applications, there are even greater breakthroughs 
 on the horizon: semi-autonomous cars and trucks and perhaps even fully-autonomous ones; 
 widespread precision medicine leading to longer and healthier lives; transformative 
 improvements to education and the pursuit of science; new ways to pursue the humanities; and 
 evolution in the workplace. There are new data science applications brewing in almost every 
 field of human endeavor. 

 However, no new technology arrives without complications: Some of the complications are 
 technological, based on challenges in both developing algorithms and then perfecting software 
 and computer systems. For example, with so much data and processing capability, there are 
 inevitably security, privacy, and reliability challenges. And, if applications of data science 
 become as omnipresent as predicted, society needs the technologists to ensure they are rock 
 solid. 

 Some complications are broader, relating to the very premise of using data to valuable effect. 
 With mountains of data and correlations becoming available, we need to learn to cut through 
 them to ascertain fundamental truths, not erroneous associations which may obfuscate the 
 truth. Deeper risks arise when using data in decision systems; as new applications become 
 available, and we can predict and optimize many outcomes, we must decide what we are really 
 trying to achieve. 

 Some challenges are truly fundamental, as data science may change the operation of our 
 society and impact our own humanness. We must come to grips with limitations on how much 
 mechanistic advice and control we are willing to act on or even receive. As these systems alter 
 our jobs and our socio-political systems, we will need to understand their effects and adjust in 
 ways that we do not yet understand. Data science is affecting us already, and it may even 
 challenge our notions of ourselves as the intelligent masters of our world. 

 Because of these very broad impacts, data science as a field has led to entirely new research 
 agendas outside of its foundational fields of computer science, statistics, and operations 
 research. Data science is also changing many other disciplines (e.g., how we think about and 
 practice political science, but many more). There are also growing transdisciplinary relationships 
 between data science and many of the humanities and social sciences. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  10 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 This book’s holistic approach to data science leads us through these topics: 

 ●  Part I  , Data Science, provides a unifying definition  of data science and sets forth the 
 field's goals. It then provides a historical perspective on how data science arose from its 
 foundational fields (statistics, operations research, and computing, metaphorically 
 illustrated in  Figure I.1  ) and describes its relationship  to the sciences, social sciences, 
 and humanities. The historical story is an exciting one due to exceedingly rapid progress 
 that has changed the course of technology, many domains of applicability, and even our 
 society writ large. 

 This metaphorical braid shows the integration of the foundational fields, labeled S, OR, and C. 
 Figure I.1 Integration of Statistics, Operations Research, and Computing 

 ●  Part II  , Applying Data Science, presents examples  of data science applications from the 
 domains of technology, commerce, science, medicine, and more. Based on our detailed 
 exposition of six applications, the chapter develops a seven-element Analysis Rubric to 
 help us analyze the relative ease or difficulty of applying data science to other 
 applications. We then review twenty-six more applications against the rubric. Some of 
 these are straightforward; others gnarly but feasible; yet others nearly impossible. 
 Almost all have unintended consequences that require care and thought.  Figure I.2 
 illustrates this part’s flow. 

 Part II introduces six applications, uses them to induce a rubric, and then demonstrates its application. 
 Figure I.2 Applying Data Science 
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 ●  Part III  , Challenges in Applying Data Science, builds off the seven elements in the 
 Analysis Rubric to present the technical, contextual, and societal challenges in making 
 data science work well. (This is illustrated in See  Figure I.3  .) With care, users of data 
 science can often navigate many of these challenges effectively. However, some are 
 perilous, and very difficult to resolve, implying that in some cases, data science is simply 
 not the right tool for the job.  Part III  is quite  clear about the risks of the misapplication of 
 technology. 

 The analysis rubric’s seven elements motivate the challenges in Chapters 8 to 14. 
 Figure I.3 Challenges in Applying Data Science 

 ●  Part IV  : Addressing Concerns, describes many societal  concerns regarding data science 
 and its applications – concerns which in turn are influenced by  Part III  ’s challenges. It 
 then discusses some approaches for mitigating these concerns while still allowing us to 
 reap the rewards. In some cases, we make prescriptive proposals: For example, we 
 recommend increasing data science education at the secondary school level and above, 
 even if this means reprioritizing a little of the current mathematics curriculum and 
 substituting more probability, statistics, and computing. In other areas, we only set forth 
 some considerations that decision makers should take into account. Part IV’s flow is 
 described in  Figure I.4  . 
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 Part IV’s summary of societal concerns motivate the recommendations in Chapters 16 to 19 
 Figure I.4 Societal Concerns and Recommendations 

 ●  An ethics thread flows through the book, with a focused section near the end of each 
 part. Data science must consider ethical matters carefully because many data science 
 applications have significant societal consequences and often rely on personal data to 
 create computational models. As illustrated in  Figure  I.5  , the thread starts by defining 
 ethical principles relevant to data science and then reviews some of the  Part II 
 applications in light of those principles. While most chapters of the book (and particularly 
 those in  Part III  ) present ethics-related issues,  the ethics thread augments these 
 discussions with the organizational challenges of balancing incentives and governance 
 to achieve good outcomes. The ethics thread concludes in  Part IV  , which ends with 
 three recommendations. 

 This figure illustrates the flow of the ethics thread, which spans Parts I to IV. 
 Figure I.5 Ethics Flow Throughout the Book 

 While the chapters build on each other, data science courses will vary in what examples from 
 Part II  they emphasize. Some readers may choose to  omit  Part IV  (which bridges from the 
 challenges  of  Part III  to societal  concerns  ), while  others may wish to omit some of the technical 
 details in  Part II  and  Part III  . 

 In all, this book’s broad perspective on the field of data science aims to educate readers about 
 the data science applications they regularly use, to apply hat understanding to new applications, 
 to more fully recognize the challenges inherent in data science, and to educate and catalyze 
 thoughtful analysis, debate, and action to make data science ever more beneficial. 
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 Part I. Data Science 

 This part begins with the goals, subfields, and history of data science. It continues by describing 
 data science’s broad applicability and a framework for ethical considerations. It concludes with 
 five tables defining important concepts and terminology. 
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 Chapter 1. Foundations of Data Science 

 This chapter first defines data science, its primary objectives, and several related terms. It 
 continues by describing the evolution of data science from the fields of statistics, operations 
 research, and computing. The chapter concludes with historical notes on the emergence of data 
 science and related topics. 

 1.1 Definitions 

 Data science  is the study of extracting value from  data – value in the form of  insights  or 
 conclusions  . 

 ●  A data-derived insight could be: 
 ○  A hypothesis, testable with more data; 
 ○  An “aha!” that comes from a succinct statistic or an apt visual chart; or 
 ○  A plausible relationship among variables of interest, uncovered by 

 examining the data and the implications of different scenarios. 

 ●  A conclusion could be in an analyst’s head or in a computer program. To be 
 useful  , a conclusion should lead us to make good decisions  about how to act in 
 the world, with those actions either taken automatically by a program, or by a 
 human who consults with the program. A conclusion may be in the form of a: 

 ○  Prediction  of a consequence; 
 ○  Recommendation  of a useful action; 
 ○  Clustering  that groups similar elements; 
 ○  Classification  that labels elements in groupings; 
 ○  Transformation  that converts data to a more useful  form; or 
 ○  Optimization  that moves a system to a better state. 

 Insights and conclusions often arise from  models  ,  which are abstractions of the real 
 world. A model can explain why or how something happens and can be tested against 
 previously unseen inputs. This is shown schematically in  Figure 1.1  . 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  15 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 From  data  in  the  world,  we  build  a  model  of  some  aspects  of  it,  reason  about  the  model 
 to  draw  conclusions,  and  check  that  these  conclusions  correspond  to  what  happens  in 
 the  world.  The  better  the  model,  the  better  the  correspondence  between  the  model’s 
 conclusions  and  the  real  world.  Dashed  arrows  denote  the  mapping  between  world  and 
 model, and solid arrows are within the world or model. 

 Figure 1.1 Models and the World 

 Of course, scientists and lay people have used data and models for centuries. Today's data 
 science builds on this usage. But it differs from classical data use due to the scale it operates at 
 and its use of new statistical and computational techniques  . 

 There is still no consensus on the definition of data science. For example, the  Journal of Data 
 Science  in its initial issue says “By ‘Data Science’  we mean almost everything that has 
 something to do with data”; Mike Loukides, co-author of  Ethics and Data Science  , says “Data 
 science enables the creation of data products”;  2  Cassie  Kozyrkov, Googles’ Chief Decision 
 Scientist, says “Data science is the discipline of making data useful.”  3  We believe our definition 
 is consistent with other definitions and that it is usefully prescriptive. 

 If a retailer tracks a billion customer transactions, analyzes the data, and learns something that 
 improves their sales, that’s a data science insight. If the retailer then automatically recommends 
 to customers what to buy next, that’s a data science conclusion enabled by machine learning. 

 Data Science touches all of society. We will highlight many applications in transportation, the 
 web and entertainment, medicine and public health, science, financial services, and 
 government. However, there are many others in the humanities, agriculture, energy systems, 
 and virtually every field. In recognition of data science’s cross-disciplinary nature, this book 
 presents data science issues from multiple points of view. 

 1.1.1 Data Science – Insights 

 Data science offers insights by permitting the exploration of data. The data may show a trend 
 suggesting a hypothesis in the context of a model that leads to useful conclusions – which 
 themselves can be tested with more data. A trend might indicate that two (or more) things are 
 correlated  , meaning the variables are related to each  other, such as smoking and cancer. A 
 potential correlation is an insight, and a hypothesis that can be tested. The data may even 
 suggest the possibility of an underlying  causal relationship  ,  which occurs when one thing 
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 causes another – smoking causes cancer, though cancer does not cause smoking. Or perhaps 
 a conclusion is not obvious, but can be explored with many what-if analyses that also draw on 
 more data. 

 Insights are facilitated by interactive tools that simplify this exploration and let us benefit from 
 vast amounts of data without bogging down and missing the forest for the trees: 

 ●  Tools to help us gain insight start with data transformation, which converts units, merges 
 names (such as “Ohio” and “OH”), combines data sources, and removes duplicates, 
 errors, and outliers. 

 ●  Tools to automate experiments by providing integrated modeling capabilities that simplify 
 creation, execution, exploration, and record keeping. 

 ●  Tools that offer interactive capabilities that guide us to non-obvious conclusions. 

 Pioneering data scientist John Tukey said, “The simple graph has brought more information to 
 the data analyst’s mind than any other device,”  4  but  modern visualization offers many other 
 beautiful and useful ways to gain insight. However, graphs must be scrutinized very carefully for 
 meaning. 

 As an example of a graph that provides some insight but that also leads to many questions, the 
 scatter plot in  Figure 1.2  shows the relationship  between mortality and COVID-19 vaccination 
 rates during the US delta variant wave. It shows four series of points representing different time 
 periods ranging from delta’s beginning mid-2021 to its late 2021 end. Each point represents the 
 vaccination rate and number of COVID-19 deaths in each of the fifty states and the District of 
 Columbia. We show  regression lines  for each of the  four series of data – each line represents 
 the linear equation that best fits the data. Critical analysis would be served with error bars for 
 each data point, but this information was unavailable. 

 The 6-Sep-21 and 27-Sep-21 series data were from the peak of the wave, and they tilt strongly 
 down and to the right, meaning that higher state vaccination rates were strongly correlated with 
 lower death rates. The 11-Jul-21 and 16-Dec-21 regressions (beginning and ending of the wave) 
 showed small negative slopes, but reports of the CDC’s imprecision in vaccination reporting  5 

 sufficiently concerned us to demonstrate a good visualization practice by providing a prominent 
 warning on the graph. Clearly, this data’s association of vaccination rate on mortality declined 
 after the delta wave crested. During the five-month period, the chart also shows that vaccination 
 rates increased by about 13% (absolute). 

 This data and our prior understanding of vaccine biochemistry lead us strongly to believe there 
 is an underlying causal relationship – that vaccinations reduce the risk of deaths. (The CDC 
 COVID Data Tracker provides even stronger evidence of a causal relationship.  6  ) However, 
 Figure 1.2  does  not  provide conclusive insight, as  there  could  be other explanations for some of 
 the effects. States differ along many relevant variables other than vaccination rate, such as 
 population age, density, and prior disease exposure. This is not a randomized controlled 
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 experiment where each state was randomly assigned a vaccination rate. The reasons the curve 
 flattened at the end of the wave may not be because of reduced vaccine efficacy against the 
 delta variant but rather because of the impact of behavioral changes, changes in the locale of 
 the wave as it spread across different states, increase in immunity from prior exposure, waning 
 vaccine efficacy over time, and the very beginning of the follow-on Omicron wave. 

 A data scientist could gain further insight from the analysis of outliers. If not an artifact of the 
 data, the twin 1.6 per 100K points that came from Florida, for example, may result from disease 
 in the state’s large at-risk elderly population. Data scientists could construct and evaluate many 
 hypotheses from this graph using additional data and visualization techniques. But data 
 scientists need to exercise caution about the quality of individual data points. 

 Each  point  shows  the  7-day  trailing  average  daily  COVID-19  mortality  of  50  US  states  and  the 
 District  of  Columbia  plotted  against  their  respective  vaccination  rates  at  the  end  of  the  time 
 period.  This  data  (though  not  this  visual)  was  copied  from  the  NYTimes  Coronavirus  in  the  US: 
 Latest  Map  and  Case  Count  during  the  period  represented  by  this  graph.  7  The  NY  Times  itself 
 gathered  this  data  from  government  authorities,  and  this  limited  data  was  likely  to  be  comparable 
 across  regions  and  time  periods.  US  CDC  data  (not  shown)  reported  state  totals  that  vary  from 
 NYTimes data, but the trend lines are very similar. 

 Figure 1.2 Deaths Versus Full Vaccination 
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 The US omicron wave, which followed the delta wave, showed a different regression line. While 
 Figure 1.2 does not illustrate this, state per capita mortality and vaccination rates became 
 positively correlated for a brief period in mid-January 2022, though just slightly so. There are 
 many possible explanations for this such as the specifics of the omicron mutation and the earlier 
 arrival of the variant in vaccinated states. The reversal, and indeed this chart, reminds us to 
 scrutinize data and visualizations carefully and to exercise due caution, recognizing the 
 limitations of the data and its presentation.  Section  11.4  discusses this topic further. 

 1.1.2 Data Science – Conclusions 

 Let's look at some examples of our six types of conclusions from the beginning of  Section 1.1  . 
 Conclusions can be embedded in programs or serve to provide insight to a data analyst. 

 ●  Prediction  : 
 ○  Predict how a protein will fold, based on its structure. 
 ○  Auto-complete user input, based on the characters typed so far. 

 ●  Recommendation  : 
 ○  Recommend a song, based on past listening. 
 ○  Suggest possible medical therapies, based on laboratory results. 
 ○  Show an ad to a user, based on their recent web searches. 

 ●  Classification  : 
 ○  Assign labels to photos (e.g., “cat” or “dog”). 
 ○  Identify a bird's species, from its song. 
 ○  Determine if a client is satisfied or unsatisfied, via sentiment analysis. 
 ○  Label email as spam. 

 ●  Optimization  : 
 ○  Find the optimal location to build a new warehouse based on minimizing 

 supplier/consumer transportation costs. 
 ○  Schedule product manufacturing to maximize revenue based on predicted 

 future demand. 
 ●  Transformation  : 

 ○  Translate a sentence from Chinese to English. 
 ○  Convert astronomical images to entities. 

 ●  Clustering  : 
 ○  Cluster together similar images of cancerous growths to help doctors 

 better understand the disease. 
 ○  Cluster email messages into folders. 

 Models that generate these conclusions may be  clear  box  or  opaque box  . A clear box 
 model’s logic is available for inspection by others, while an opaque box model’s logic is 
 not. The “opaque box” term can also apply to a model whose operation is not 
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 comprehensible, perhaps because it relies on machine learning. Context usually clarifies 
 whether opacity refers to unavailability, incomprehensibility, or both. 

 This book is filled with many examples of using data to reach conclusions. For example, 
 Chapter 4  leads off by discussing data-driven spelling  correction systems, which may 
 classify  words into correct or  mispelled  variants  (perhaps underlining the latter), 
 recommend  correct spellings (“did you mean, misspell?”)  or automatically  transform  an 
 error into a correct spelling. Returning to the mortality insight discussion that concluded 
 the previous section, we also discuss COVID-19 mortality prediction in greater detail, but 
 we will see this is hard to do even when there is much more data available. 

 1.1.3 Scale 

 Some data science success is due to new techniques for analysis, and new algorithms for 
 drawing conclusions. But much is due to the sheer scale of data we can now collect and 
 process.  8 

 As examples of the size of data collections as of 2021: There are 500 billion web pages (and 
 growing) stored in the Internet Archive. The investment company Two Sigma stores at least a 
 petabyte of data per month. YouTube users upload five hundred hours of video per minute.  9  The 
 SkyMapper Southern Sky Survey is 500 terabytes of astronomical data; the Legacy Survey of 
 Space and Time is scheduled to produce 200 petabytes in 2022.  10  See  Table 1.1  below, which 
 describes the scale of data with representative examples. 

 Table 1.1 Scale of Data and Representative Examples 

 Size  Example 

 10  3  KB  Kilobyte  A half page of text, or a 32x32 pixel icon 

 10  6  MB  Megabyte  The text of two complete books, or a medium-resolution photo 

 10  9  GB  Gigabyte  An hour-long HD video, ten hours of music, or the  Encyclopedia Britannica 
 text 

 10  12  TB  Terabyte  One month of images from Hubble Space Telescope or a university library's 
 text 

 10  15  PB  Petabyte  Five copies of the 170 million book Library of Congress print collection 

 10  18  EB  Exabyte  Twenty copies of the 500 billion page Internet Archive, or two hours of data 
 at the planned rate of the Square Kilometer Array telescope in 2025 

 10  21  ZB  Zettabyte  World's total digital content in 2012, or total internet traffic in 2016 
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 Data science grows rapidly because of a  virtuous cycle  whereby its impact leads to more data 
 production (often from increased usage), more research and development and impact as the 
 application improves, and then even more data. (While  “  virtuous cycle” is a commonly used 
 term to describe this feedback loop, not all effects are beneficial, and we both recognize and 
 discuss the cycle’s negative effects as well.) 

 The  World Wide Web  was developed in the mid-1990’s.  It resulted in a vast collection of 
 informative web pages, and enabled the agglomeration of data about user interactions with 
 these pages. The web’s extremely broad data led to novel consumer services and disrupted 
 entire industries. Recommendation engines, as used at Amazon and eBay, became feasible,  11 

 web search continuously improved, and social networks emerged.  12 

 Big data  refers to techniques for conceiving, designing,  and developing vast amounts of 
 information and operating systems that can gather, store, and process it. In 1994, the book 
 Managing Gigabytes  assumed that a gigabyte was big  data. In 2021, a sub-$1000 laptop holds 
 a terabyte of data, big data is measured in petabytes, and annual worldwide hard disk sales are 
 measured in zettabytes. 

 Data science focuses on big data, but many of its techniques are equally beneficial for  small 
 data.  Scatter plots and other visualization techniques  often work better for a hundred data 
 points than for a trillion. 

 Small and big data are often combined for a richer understanding. For example, a company with 
 big data from website clicks might also recruit a few subjects for an in-depth user-experience 
 assessment. They are asked questions such as "What did you think of the user interface?", 
 "How easy was it to accomplish this task?", "When you were trying to find the cheapest product, 
 did you notice the 'sort by price' button?", etc. 

 1.2 The Emergence of Data Science 

 Data science emerged from combining three fields. For the purposes of this book, we define 
 them as follows: 

 ●  Statistics  is the mathematical field that interprets  and presents numerical data, 
 making inferences and describing properties of the data. 

 ●  Operations research,  or  OR,  is a scientific method  for decision-making in the 
 management of organizations, focused on understanding systems and taking 
 optimal actions in the real world. It is heavily focused on the  optimization  of an 
 objective function  –a precise statement of a goal,  such as maximizing profit or 
 minimizing travel distance. 

 ●  Computing  is the design, development, and deployment  of software and 
 hardware to manage data and complete tasks. Software engineering gives us the 
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 ability to implement the algorithms that make data science work, as well as the 
 tools to create and deploy those algorithms at scale. Hardware design gives us 
 ever increasing processing speed, storage capacity, and throughput to handle big 
 data. 

 Some of data science’s most important techniques emerged from work across 
 disciplines. While we include  machine learning  within  computing, its development 
 included contributions from statistics, pattern recognition, and neuropsychology. 
 Information visualization  arose from statistics, but  has benefited greatly from 
 computing’s contributions. 

 We will look at each of these topics in more detail, and then review the key terminology 
 from them in  Table I.1  to  Table I.5  at the end of  this part. 

 1.2.1. Statistics 

 Some of the key ideas from the field of statistics date back over a thousand years to Greek and 
 Islamic mathematicians. The word  statistics  is derived  from the Latin word for  state  . Statistics 
 originally studied data about the state’s tables of census data listing who is alive, who died, and 
 who to tax, such as the 1794 Statistical Accounts of Scotland by Sir John Sinclair.  13  His 
 inscription to the work is telling. Taken from Cicero, it argued that “to counsel on national affairs, 
 one needs knowledge of the make-up of the state.”  14  Even today, the perspective provided by 
 the old tables is valuable: Sinclair’s data, compared with current United States Center for 
 Disease Control data, vividly illustrates a 1000-fold decrease in childhood mortality over 250 
 years. 

 Soon after Sinclair published his accounts, statistics moved from just tabulating data to making 
 inferences  . For example, statisticians could count  how many houses there are in a city, survey 
 some to determine the average number of people per house, then use that to estimate the total 
 population. This estimate is an inexact inference, but much cheaper than an exact census of 
 every household. Statistics, as it was understood in Sinclair's time, blossomed to become 
 mathematical statistics, now focused on the mathematical methods that infer from the particular 
 (e.g., a small dataset) to the general. 

 Work on inferencing began even earlier in physics and astronomy. For example, in the 16th 
 century, astronomer Tycho Brahe collected detailed data on planetary positions. In 1621 
 Johannes Kepler analyzed that data, applied regression analysis to counteract errors, and wrote 
 down the laws of planetary motion. The laws accurately predicted how the planets moved, but 
 didn’t explain why. That was left to Isaac Newton, who in 1687 showed that Kepler’s laws 
 derived from the universal principle of gravitation. 
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 In the early 1900’s, statisticians such as R. A. Fisher developed methodologies for experiment 
 design that made it easier to analyze experiments and quantify errors in fields such as sociology 
 and psychology, where there is more uncertainty than in orbital mechanics.  15 

 In a 2001 article, Statistician Leo Breiman captured the (then) difference between the mindset of 
 most statisticians and the emerging field of data science.  16  He argued that most statisticians 
 belonged to a  data modeling culture  that assumes: 

 ●  There is a relatively simple, eternally true process in nature (such as the orbits of planets 
 due to the universal law of gravity). 

 ●  Data reflects this underlying process plus some random noise. 
 ●  The statistician’s job is to estimate a small number of parameter values leading to a 

 parsimonious model with the best fit to the data (for example, assuming the model 
 equation  F  =  Gm  1  m  2  / r  2  , estimating G = 6.674×10  −11  ).  The physicist, with the support of 
 the statistician, can then examine the model to gain insight and make predictions. 

 Breiman contrasts this with the  algorithmic modeling  culture  , which allows for complex and 
 not as easily understood models (e.g., neural networks, deep learning, random forests), but 
 which can make predictions for a broader range of processes. Making predictions in complex 
 domains with many variables is the core of modern data science. While simple equations work 
 exceedingly well in fields such as mechanics, they do not in fields like sociology and behavioral 
 psychology – people are complicated. Breiman surmised only about 2% of statisticians in 2001 
 had adopted algorithmic modeling, thus illustrating the need to broaden statistics and move 
 towards what we now call data science. 

 Since the 2001 publication of Breiman’s article, statisticians are now increasingly focusing on 
 data science challenges, and the gap has diminished between algorithms and models. In part, 
 this is because the scale of data has changed – 50 years ago a typical statistical problem had 
 100 to 1000 data points, each consisting of only a few attributes (e.g., gender, age, 
 smoker/nonsmoker and sick/healthy). Today, these numbers can reach into the millions or 
 billions (e.g., an image dataset with ten million images, each with a million pixels). 

 In summary, statistics' and data science's objectives have become well aligned, and additional 
 statistically inspired work will improve data science. Data science will undoubtedly pull both 
 mathematical and applied statistics in new directions, some of which are discussed in  the NSF 
 Report,  Statistics at a Crossroads  .  17 

 1.2.2. Visualization 

 Graphing has been relevant to statistics since at least the 1700’s because it offers insight into 
 data. William Playfair felt that charts communicated better than tables of numbers, and he 
 published excellent time-series plots on economic activity in 1786.  18  John Snow, the father of 
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 Epidemiology, used map-based visuals to provide insight into mid-1800’s London Cholera 
 outbreaks.  19  Florence Nightingale, recognized as the  founder of modern nursing, was also a 
 visualization pioneer. In collaboration with William Farr, she used pie charts and graphs of many 
 forms to show that poor sanitation, not battle wounds, caused more English soldiers to die in the 
 Crimean War. Her work led to a broader adoption of improved sanitary practices.  20,21 

 New approaches to showing information graphically have grown rapidly in the field of 
 information visualization  . Its goal is to “Devise  external aids that enhance cognitive abilities,” 
 according to Don Norman, one of the field’s founders.  22  Stu Card, Jock Mackinlay, and Ben 
 Schneiderman compatibly define the field as “the use of computer-supported, interactive, visual 
 representations of data to amplify cognition.”  23  These  scientists all believed interacting with the 
 right visualization greatly amplifies the power of the human mind. Even the simple graph in 
 Figure 1.2  brings meaning to 204 data points (which  include data from tens of millions of 
 people) and clarifies the impact of vaccination on mortality. 

 Because of the enormous improvements in both computational capabilities and display 
 technology, we now have continually updated, high resolution, multidimensional graphs and an 
 incredibly rich diversity of other visuals – perhaps even virtual reality.  24  Today, visualization 
 flourishes with contributions from multidisciplinary teams with strong artistic capabilities.  25,26 

 Resulting visuals can integrate the display of great amounts of data with data science's 
 conclusions, allowing individuals to undertake what-if analyses. They can simultaneously see 
 conclusions' sensitivity to different inputs or models and gain insight from their explorations.  F 1

 Visualizations targeted at very specific problems in the many application domains addressed by 
 data science can bring data science to non-data science professionals and even the lay public. 

 The public media regularly use interactive visualizations to reinforce and clarify their stories, for 
 example, the vast number of COVID-19 charts and graphs presented during the pandemic. 
 Computer scientists apply visualization in an almost recursive way to illustrate complex data 
 science-related phenomena such as the workings of neural networks. If successful, these 
 visualizations will first improve data science and then visualization itself. 

 In addition to focusing on visuals, the field of visualization must also catalyze ever improving 
 tools for creating them. Some platforms are for non-programming users of data science in 
 disciplines such as financial analysis and epidemiology. Other platforms are for programmers 
 with sophisticated data science skills. In both cases, we can use data science to guide users in 
 interactive explorations: suggesting data elements to join and trends to plot, and automatically 
 executing predictive models. 

 1  The Baby Name Voyager visualization  27  (see  datascienceincontext.com/babyname  )  of the yearly 
 popularity of United States baby names convinced co-author Alfred that even a simple time series plot, 
 instantly displayed in response to user input, is so much more useful than the underlying tabular data. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  24 

https://www.datascienceincontext.com/babyname


 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 A word of warning: Visuals are powerful, and so amplify the perception of validity of what they 
 show. A timeline showing an occurrence frequency trending in one direction appears conclusive, 
 even if the graph's points were inconsistently or erroneously measured. Pictures may evoke a 
 notion of causality where there is none. Visualization's power is such that great care must be 
 taken to generate insight, not spurious conclusions. For more on this, see  Section 11.4  on 
 Communicating Data Science Results. 

 We wanted to conclude this section by showing some compelling visualizations, but the best 
 ones almost invariably use color and interactivity, both of which are infeasible in this black and 
 white volume. Instead, we refer the reader to the visualizations on sites such as  Our World in 
 Data  and  FlowingData  .  28,29 

 1.2.3. Operations Research 

 While statistics is about making inferences from data, the field of operations research focuses 
 on understanding systems and then creating and optimizing models that will lead to better, 
 perhaps optimal, actions in the world. Applications are optimizing the operations of systems 
 such as computer and transportation networks, facilities planning, resource allocation, 
 commerce, and warfighting. This emphasis on optimization leading to action, as well as its 
 problem-solving methodology, strongly ties operations research to data science. 

 Operations research was named by UK military researchers Albert Rowe and Robert 
 Watson-Watt, who in 1937 and the lead-up to World War II were optimizing radar installations. 
 Soon after, principles and methods of the field were applied to business and social services 
 problems. 

 In the 1800s, long before the field was named, Charles Babbage  F  advocated for scientific 2

 analysis to optimize public services such as rail transportation and postal delivery.  30  Research 
 by Babbage and by Rowland Hill led to the invention of postage stamps. With continuing growth 
 in the scale of centrally managed societal systems and improvements in applied mathematics, 
 operations research grew greatly in the 20th century. In part, this was due to its applicability to 
 complex, large-scale warfare. 

 Operations research applies many models and mathematical techniques to a wide variety of 
 application domains. For example: 

 ●  The  traveling salesperson problem  (TSP) tries to find  the shortest route that lets a 
 salesperson pass through each city that needs to be visited exactly once and then to 
 return home.  31  Operations researchers model TSP with  a network (or graph) where cities 

 2  Babbage is most well known for having first conceived of the stored program computer, although he 
 failed to build a working model. 
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 are nodes and labeled edges represent the paths and distances between cities. 
 Solutions need to consider that there are an exponentially large number of possible 
 routes. 

 Various techniques have been applied:  Dynamic programming  is elegant, provides an 
 optimal solution, but only works well when there are a small number of nodes.  32  Hybrid 
 techniques, which typically combine  linear programming  and heuristics, work better for 
 larger networks though they may only provide the approximate answers that many 
 applications need.  33 

 ●  A  resource allocation problem  tries to achieve a project’s  goal at minimum cost by 
 optimizing resource use. Consider a baker with a fixed supply of ingredients, a set of 
 recipes that specify how much of each ingredient is needed to produce a certain baked 
 good, and known prices for ingredients and finished products. What should the baker 
 bake to maximize profit? Linear programming is often used for resource allocation 
 problems like this. 

 ●  The  newsvendor problem  is similar to the resource  allocation problem, but with the 
 added constraint that newspapers are published once or twice a day and lose all value 
 as soon as the next edition comes out.  34  The newsvendor  needs to stock its papers by 
 estimating the “best” amount, sometimes guessing from daily demand. “Best” here 
 depends on the sales price, the unit cost paid by the seller, and the unknown customer 
 demand. Estimating demand from data is tricky due to seasonal effects, the actual news 
 of the day, and the simple fact that we never know true demand when supplies sell out. 
 Could we have sold another 10, 20, or perhaps 0? 

 An additional complexity is the more copies a paper sells, the more it can charge for 
 advertising so insufficient inventory also reduces advertising revenue. Thus, if the 
 optimization were to be done by the newspaper, there is a primary metric (direct profit on 
 paper sales) as well as a secondary metric  (total  circulation). We will see examples of 
 similar optimization tradeoffs in the examples of  Part II  . 

 Operations research has a theoretical side, with a stable of mathematical modeling and 
 optimization techniques, but it has always focused on practical applications. Its methodology 
 begins with creating a model of how a system works, and often defining an objective function to 
 define the goals. It continues with capturing the relevant data to calibrate the model, and results 
 in algorithms that generate the best possible results. The field focuses on the rigorous analysis 
 of results with respect to a particular model, and has expertise in simulation that is often used to 
 calibrate or test optimization algorithms. 

 Traditionally, operations research operated in a  batch  mode  where there was a one-time data 
 collection process, after which models were built, calibrated, analyzed, and optimized. The 
 resultant improvement blueprint was then put into practice. 
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 Today, we can continually collect data from a real-time system, feed it into a model, and use the 
 model's outputs to continually optimize a system. This system could be a transportation 
 network, pricing within a supermarket, or a political campaign. This  online mode  scenario (or, 
 continual optimization  ) became feasible when computer  networks and the web made 
 real-time information broadly available.  35 

 Operations research techniques can be of great use to data scientists. As data science 
 applications grow in complexity and importance, it becomes important to rigorously demonstrate 
 the quality of their results. Additionally, simulations may be able to generate additional valuable 
 data. 

 In summary, operations research approaches are already infused in data science. Its objectives, 
 models, algorithms, and focus on rigor are crucial to one of data science's most important goals: 
 optimization. In return, data science's techniques and problems are driving new research areas 
 in operations research, including reinforcement learning and decision operations. 

 1.2.4. Computing 

 The breadth of the field of computing has contributed deeply to data science. In particular, these 
 five computing subfields have had major impact: 

 ○  Theoretical computer science  provides the fundamental  idea of an 
 algorithm  –a clearly specified procedure that a computer  can carry out to 
 perform a certain task–and lets us prove properties of algorithms. 

 ○  Software engineering  makes reliable software systems  that let an 
 analyst be effective without having to build everything from scratch. 

 ○  Computer engineering  supplies the raw computing power,  data storage, 
 and high-speed communications networks needed to collect, transmit, 
 and process datasets with billions or trillions of data points. 

 ○  Machine learning  or  ML  makes it possible to automatically  construct a 
 program that learns from data and generalizes to new data. Its  deep 
 learning  subfield allows these learned programs to  transform input data 
 into intermediate representations through multiple (deep) levels, instead 
 of mapping directly from input to output. 

 ○  Artificial intelligence  or  AI  creates programs that  take appropriate 
 actions to achieve tasks that are normally thought of as requiring human 
 intelligence. Robot actions are physical; other AI programs take digital 
 actions. Most current AI programs use machine learning, but it is also 
 possible for programmers to create AI programs using not what the 
 program learns, but what the programmers have learned. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  27 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 We are frequently asked to compare the fields of artificial intelligence and data science. One 
 clear difference is that data science focuses on gaining value in the form of  insights  and 
 conclusions  ,  whereas AI focuses on building systems  that take appropriate, seemingly intelligent 
 actions in the world.  With less focus on gaining insight,  AI doesn’t put as much emphasis on 
 interacting with data or exploring hypotheses. Consequently, it pays less attention to statistics  , 
 and more attention to creating and running computer programs  . Another key difference is that data 
 science, by definition, focuses on data and all the issues around it, such as privacy and security 
 and fairness. The kind of AI that focuses on data also deals with these issues, but not all AI 
 focuses on data. 

 However, a clear comparison of AI and data science is complex because AI has come to have 
 different meanings to different people: As one example, AI is often used synonymously with 
 machine learning. While we do not agree that those terms should be equated, data science 
 clearly has a broader focus than just machine learning. As another example, AI is sometimes 
 used to connote techniques aimed at duplicating human intelligence as in John McCarthy’s 
 1956 introductory definition at a Dartmouth Workshop: “Machines that can perform tasks that 
 are characteristic of human intelligence.” While we again do not agree with the narrowness of 
 this definition, data science has broader goals. 

 A major reason that computing has had such an impact on data science is that  empirical 
 computing  augmented computing’s traditional focus  on analytical and engineering techniques: 

 ●  Computer scientists and programmers initially put their efforts into developing algorithms 
 that produced provably correct results and engineering the systems to make them 
 feasible.  For example, they took a clear set of the  rules for keeping a ledger of deposits 
 and withdrawals, and they deduced the algorithms for computing a bank account's 
 balance. There is a definitive answer that, barring a bug, can be computed every time. 

 ●  Empirical computing derives knowledge from data, just as  natural sciences do. Science 
 is built on results derived from observation, experimentation, data collection, and 
 analysis. The empirical computing approach is inductive rather than deductive, and its 
 conclusions are contingent, not definitive – new data could change them. Kissinger et al. 
 frame a related discussion on AI (which, as practiced today, is empirical) and notes it is, 
 “judged by the utility of its results, not the process used to reach those results.”  36  Below 
 are example areas where the application of empirical methods led to advances. 

 Information retrieval  is the study and practice of  organizing, retrieving, and distributing textual 
 information. It blossomed in the 1970’s, as text was increasingly stored in digital form. Gerard 
 Salton developed data-driven approaches for promoting information based on usage pattern 
 feedback.  37  For example, his system learned when a  user searches a medical library for [hip 
 bone], that [inguinal] and [ilium] are relevant terms. It also learned which results most users 
 preferred, and promoted those to other users. These techniques played a large role in the 
 development of today’s Web search engines. 
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 A/B experimentation  became pervasive in computing with the rise of the World Wide Web.  38 

 Suppose a company detects that a page on their website confuses their customers. They 
 perform an experiment by creating a version of the page with a different wording or layout and 
 show it to, say, 1% of their users. If the experiment shows that the modified version B page 
 performs better than the original version A page, they can replace the original page with version 
 B. Then they can make another experiment starting from a new version B, and so on. Thus, 
 whether done automatically or under human control, the website can continually improve. 
 Notably, improvements lead to more usage, more usage generates more data, and more data 
 allows for more site improvements. We will return in  Chapter 14  to the benefits and risks of this 
 classic virtuous cycle. 

 Problems with inherent uncertainty, such as speech recognition, machine translation, image 
 recognition, and automated navigation saw markedly improved performance as more empirical 
 data was applied. Every day, billions of people use these improved applications, which are 
 regularly enhanced via the analysis of data. Even systems programming–the software that 
 controls operating systems, storage, and networks–has benefited from machine learning 
 algorithms that learn patterns of usage and optimize performance. 

 The very usability of systems has been revolutionized by advances in  human computer 
 interaction (HCI)  , which leverages experimental techniques  to ascertain what user interfaces 
 are both useful and natural. HCI’s hard won gains revolutionized computer use, moving 
 computers from a specialized tool for experts to nearly universal adoption. We discuss many 
 examples of the applicability of data science in  Chapter  4  and  Chapter 5  . 

 Advances in computing hardware made the big data era possible. Transistor density has 
 doubled every two years or so, as predicted by Gordon Moore in his eponymous Moore’s Law.  39 

 The first commercially produced microprocessor, the Intel 4004 from 1971, had 2000 transistors 
 and a clock rate of 0.7 MHz. Modern microprocessors have ten million times more transistors 
 and a clock speed that is ten thousand times faster. Overall, computers in 2021 are about a 
 trillion times better in performance per dollar than 1960 computers.  F 3

 Improvements in all aspects of computation related made systems cost  less  yet be  more  usable 
 for  more  applications by  more  people. Increases in  performance let more sophisticated 
 algorithms run. More storage lets us store the Web's vast amount of data (particularly image 
 and video), create powerful neural networks, and implement other knowledge representation 
 structures. When the first neural networking experiments were done, they were limited by the 
 amount of data and computational power. By the 1990’s those limitations began to disappear; 
 web-scale data and Moore’s law facilitated machine learning. 

 3  Consider that if cancer treatment had kept pace with computation, Earth would see much less than one 
 cancer death per year. A trillion-fold difference is larger than the ratio of the combined weight of all the 
 people in the United States to a single pencil. 
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 This steady stream of research results and demonstrable implementation successes have 
 propelled computing beyond its roots in theory and engineering to empirical methods. The pace 
 of discovery picked up as Moore’s law provided computational, communication, and storage 
 capacity; the Web provided vast data; and accelerated research in high performance algorithms 
 and machine learning yielded impressive results. Engineers have adapted to this change in 
 computational style with new, fit-for-purpose processor and storage technologies. Key events in 
 computing, illustrated by  Table 1.2  ’s timeline, helped  pave the way to data science. 
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 Table 1.2 Key Events in Computing’s Contribution to Data Science 

 Year  Description  Person or entity  Paper or event 
 1950  The value of learning by a founder 

 of field of computing 
 Alan Turing  Computing Machinery and Intelligence  40 

 1955  Successful application of learning to 
 checkers 

 Arthur Samuels  Some studies in machine learning using 
 the game of checkers  41  (1959) 

 1965  The computational fuel: Moore’s 
 Law 

 Gordon Moore  Cramming more components onto 
 integrated circuits  39 

 1971  Early use of data in search  Jerry Salton  Relevance Feedback and the Optimization 
 of Retrieval Effectiveness  37 

 1982  Growth of use of data in 
 computer-human interaction (CHI) 

 ACM: Bill Curtis, Ben 
 Schneiderman 

 Initiation of ACM CHI Conference  42,43 

 1986  Reignition of neural network 
 machine learning 

 David Rummerhart, 
 Geoffrey Hinton 

 Learning Representations by 
 Back-Propagating Errors  44 

 Early 
 1990’s 

 Birth of the World Wide Web  Tim Berners-Lee et al.  Information Management: A Proposal  45 

 (1989-90) 

 1996  Powerful new data-driven technique 
 for search 

 Sergey Brin and Larry 
 Page 

 Anatomy of a Large-scale Hypertextual 
 Web Search Engine  46  (1998) 

 Mid- 90’s  Emergence of social networks  Various  Geocities, SixDegrees, Classmates, ... 

 1998  Emergence of data in search 
 advertising 

 GoTo/Overture  GoTo, renamed Overture and later 
 acquired by Yahoo, launched internet 
 search advertising 

 2007  Cloud computing: Powering data 
 science 

 Amazon  Launch of AWSAnnouncing Amazon 
 Elastic Compute Cloud - beta  47  (2006) 

 2010  Growth in GPU usage for neural 
 network processing 

 Various  Large-Scale Deep Unsupervised Learning 
 Using Graphics Processors  48  (2009) 

 2011  Demonstration of power of data on 
 a gameshow 

 IBM  Jeopardy victory  49 

 2012  Practical demonstration of neural 
 networks in image recognition 

 Alex Krizhevsky, Ilya 
 Sutskever, Geoffrey E. 
 Hinton 

 ImageNet Classification with Deep 
 Convolutional Neural Networks  50 

 2012  Deployment of neural networks in 
 speech recognition 

 Geoffrey Hinton et al.  Deep Neural Networks for Acoustic 
 Modeling in Speech Recognition: The 
 Shared Views of Four Research Groups  51 

 2018  Demonstration of reinforcement 
 learning in games 

 DeepMind: David Silver 
 et al. 

 A General Reinforcement Learning 
 Algorithm That Masters Chess, Shogi, and 
 Go Through Self-Play  52 

 2019  Large scale, deep generative 
 models 

 Various  Bert,  53  GPT-3,  54  Turing-NLG,  55  and other 
 models (2019-2020) 

 This  timeline  places  the  birth  of  key  technical  ideas,  important  use  cases,  and  necessary 
 technological  enablements.  Dates  in  parentheses  are  publication  dates  and  may  differ  from 
 the year of impact. 
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 Lest there be any remaining question on the importance of empirical computing, college student 
 demand for data science courses and programs is on the rise worldwide. Berkeley’s introductory 
 data science course (Data 8) enrolled fewer than 100 students in the Fall of 2014 when the 
 course was first introduced. In Spring 2019, enrollment had grown to over 1600 students. At the 
 same time, computer science students are increasingly specializing in machine learning, a core 
 data science component. From co-author Alfred’s experience leading intern programs at IBM, 
 Google, and investment firm Two Sigma, machine learning internships started becoming 
 popular in 2001 and have become the most asked for specialization. At the major machine 
 learning conference, NeurIPS, attendance grew eight-fold from 2012 to 2019, when 13,000 
 attended. 

 1.2.5 Machine Learning 

 Machine learning, a subfield of computing, is the field with the most overlap with data science. It 
 can be broken down into three main approaches: 

 ●  Supervised learning  trains on a set of (input, output)  pairs, and builds a model that can 
 then predict the output for new inputs. For example, given a photo collection with each 
 photo annotated with a subject class (e.g., “dog,” “person,” “tree”), a system can learn to 
 classify new photos. This task is called a  classification  ;  the task of predicting an output 
 from a continuous range of numbers is called  regression  . 

 ●  Unsupervised learning  trains on data that has not  been annotated with output classes. 
 For example, given a photo collection, a model can learn to cluster dog pictures together 
 in one class and people pictures in another, even if it does not know the labels “dog” and 
 “person.” Internally, the model may represent concepts for subparts such as “torso” and 
 “head.” Such a model may invent classes that humans would not normally use. The task 
 of grouping items into classes (without labels for the classes) is called  clustering  . 

 ●  Reinforcement learning  builds a model by observing  a sequence of actions and their 
 resulting states, with occasional feedback indicating whether the model has reached a 
 positive or negative state. For example, a model learns to play checkers not by being 
 told whether each move is correct or not, but just by receiving a reward (“you won!”) or 
 punishment (“you lost!”) at the end of each training game. 

 Another way to categorize machine learning models is to consider whether the model is focused 
 on learning the boundary between classes, or learning the classes themselves: 

 ●  A  discriminative model  answers the question “given  the input  x  , what is the most likely 
 output  y  ?.” Sometimes this is explicitly modeled as  finding the output  y  that maximizes 
 the probability  P  (  y  |  x  ), but some models answer the  question without probabilities. 

 ●  A  generative model  answers the question “what is the  distribution of the input?” or 
 sometimes “what is the joint distribution of input and output?.” Sometimes this is an 
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 explicit model of  P  (  x  ) or  P  (  x, y  ), and sometimes the model can sample from the 
 distribution without explicitly assigning probabilities. 

 For example, if the task is to label a sentence as being either Danish or Swedish, a 
 discriminative classifier model could do very well simply by recognizing that Swedish has the 
 letters  ä  ,  ö  , and  x  , while Danish uses  æ,  ø  , and  ks  .  With a few more tricks, the model could 
 correctly classify most sentences, but it could not be said to know very much about either 
 language. In contrast, a generative classifier model would learn much more about the two 
 languages, enough to generate plausible sentences in either language. Some generative 
 models can answer other questions, such as “is this sentence rare or common?” However, a 
 discriminative model, being simpler, can be easier to train and is often more robust. 

 As another example, if we trained models on images of birds labeled with their species, a 
 discriminative model could output the most probable species for a given image. A generative 
 model could do that, and could also enumerate other similar birds, or if parts of the bird were 
 obscured in the image, could fill in the missing parts. 

 The most common methodology for machine learning follows these steps  56  : 

 1.  Collect, assess, clean, and label some data. 
 2.  Split the data into three sets. 
 3.  Use the first set, the  training set  , to train a candidate  model. 
 4.  Use the second set, the  validation set  (also known  as  development set  or  dev set  ) to 

 evaluate how well the model performs. It is important that the dev set is not part of the 
 training; otherwise, it would be like seeing the answers to the exam before taking it. 

 5.  Repeat steps 3 and 4 with several candidate models, selecting different model classes 
 and tweaking  hyperparameters  , the variables that control  the learning process. 

 6.  Evaluate the final model against the third set, the  test set  , to get an unbiased evaluation 
 of the model. 

 7.  Deploy the model to customers. 
 8.  Continuously monitor the system to verify that it still works well. 

 We will cover many applications of machine learning in  Part II  ; here we introduce three major 
 areas of use: 

 ●  Computer Vision  (CV) processes images and videos and  has applications in search, 
 autonomous vehicles, robotics, photograph processing, and more. Most current CV 
 models are deep convolutional neural networks trained on large, labeled image and 
 video datasets in a supervised fashion. 

 ●  Natural Language Processing  (NLP) parses, manipulates,  and generates text. NLP is 
 used for translation, spelling and grammar correction, speech recognition, email filtering, 
 question answering, and other applications. Most current NLP models are large 
 transformer neural networks which are pre-trained on unlabeled text corpuses using 
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 unsupervised learning. Then, they are fine-tuned on a smaller and narrower task, often 
 with supervised learning. As of 2022, NLP models are in a state of rapid improvement 
 and are nearing parity with humans on many small tasks. However, they suffer from 
 inconsistency, an inability to know what they don’t know, and tremendous computational 
 complexity. 

 ●  Robotics  makes intelligent decisions on the control  of autonomous machines and has 
 applications in agriculture, manufacturing, logistics, and transportation. The forefront of 
 robotics research relies on reinforcement learning, in which robots are trained by a 
 combination of simulated and real-world rewards. 

 Machine learning has proven useful to all of these areas, but there are challenges, such as 
 adversarial attacks, potential bias, difficulty in generating explanations, and more. These are 
 discussed in  Part III  . 

 It is clear that machine learning and statistics have a large overlap with data science in goals 
 and methods. What are their differences? 

 ●  Statistics  emphasizes  data modeling  : Designing a simple  model that attempts to 
 demonstrate a relationship in the data and leads to understanding. It traditionally 
 focused on modest amounts of numerical data (though this has been changing), and it is 
 increasingly tackling other types of data. 

 ●  Machine learning  emphasizes  algorithmic modeling  :  Inventing algorithms that handle 
 a wide variety of data, and lead to high performance on a task. The models may be 
 difficult to interpret. 

 ●  Data science  focuses on  the data itself:  Encouraging  the use of whatever techniques 
 lead to a successful product (these techniques often include statistics and machine 
 learning). Data science operates at the union of statistics, machine learning, and the 
 data's subject matter (e.g., medical data, financial data, and astronomical data). 

 Machine learning also distinguishes itself from statistics by automatically creating models, 
 without a human analysts' considered judgment. This is particularly true for  neural network 
 models. In these, the inputs are combined in ways that lead to predicting outputs with the 
 smallest amount of error. The combinations are not constrained by an analyst’s preconceptions. 

 The  deep learning  subfield uses several layers of  neural networks, so that inputs form low-level 
 representations, which then combine to form higher-level representations, and eventually 
 produce outputs. The system is free to invent its own intermediate-level representations. For 
 example, when trained on photos of people, a deep learning system invents the concepts of 
 lines and edges at a lower level, then ears, mouths, and noses at a higher level, and then faces 
 at a level above that. 
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 1.2.6 Additional History 

 The erudite mathematician and statistician John Tukey set forth many of data science's 
 foundational ideas in his 1962 paper  The Future of  Data Analysis  and 1977 book  Exploratory 
 Data Analysis.  4,57  Tukey made a strong case for understanding  data and drawing useful 
 conclusions, and for how this was different from what much of statistics was doing at the time. 
 He was two thirds of the way to data science, missing only the full scale of modern computing 
 power. 

 In 2017, Stanford Professor of Statistics David Donoho, in a follow-on piece to the 
 aforementioned  The Future of Data Analysis,  made the  case that then-recent changes in 
 computation and data availability meant statisticians should extend their focus.  58  His sketch of a 
 “Greater Data Science Curriculum” has many places where statistics play a large role, but 
 others where computing and other techniques are dominant. These thoughts were echoed by 
 others in a Royal Statistics Society Panel of 2015.  59  More recently, data science curricula such 
 as Berkeley’s effectively integrate these key topics.  60,61 

 Tukey used the term  data analysis  in 1962;  4  the term  data science  became popular around 
 2010,  F  after an early use of the term by the statistician William Cleveland in 2001, the launches 4

 of  Data Science Journal  in 2002 and  The Journal of  Data Science  in 2003, and a US National 
 Science Board Report in 2005.  F  ,64  Big data  dates back to the late-1990’s,  8,65  perhaps first in a 5

 1997 paper by Michael Cox and David Ellsworth of the NASA Ames Research Center.  66 

 Related terms go back much further.  Automatic data  was used for punch card processing in 
 the 1890 US census (using mechanical sorting machines, not electronic computers).  Data 
 processing  entered common parlance in the 1950’s as  digital computers made data 
 accumulation, storage, and processing far more accessible. 

 While we associated A/B testing with the rise of the World Wide Web, its use is far older. In 
 1923, Claude C. Hopkins, who with Albert Lasker founded the modern advertising industry, 
 wrote “Almost any question can be answered quickly and finally by a test campaign.” 

 In 1950, Alan Turing laid out many key ideas of artificial intelligence and machine learning in the 
 article  Computing Machinery and Intelligence  .  40  However,  the terms arrived a bit later:  Artificial 
 intelligence  was coined in 1956 for a workshop at  Dartmouth College,  67  and  machine learning 
 was popularized in 1959 by IBM Researcher Arthur Samuel in an article describing a program 

 5  Peter Naur used the term  data science  in his 1974  book,  Concise Survey of Computer Methods  , 
 Studentlitteratur Lund Akademisk Forlag Kobenhavn,  63  but he was referring to  issues of data 
 representation. Later in his text, in a chapter entitled, Large Data Systems in Human Society, he referred 
 to emerging political and ethical challenges. 

 4  The Google Books Ngram Viewer  62  , which samples frequency  of terms (or NGrams) in the corpus of 
 published books, shows a noticeable uptick circa 2010. See this:  datascienceincontext.com/ngram-ds  . 
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 which learned checkers by playing games against itself.  41  Neural networks  were first explored 
 in the 1940s and 50s by Hebb,  68  McCulloch and Pitts,  69  and Rosenblatt.  70  Deep learning  (in its 
 current form, for neural networks) was coined in 2006.  71 
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 Chapter 2. Data Science is Transdisciplinary 

 Data science's primary progenitors are statistics, operations research, and computing, but the 
 sciences, humanities, and social sciences are also all part of its story for these reasons: 

 1.  New Application Areas  : Data science adds valuable  techniques to a large and growing 
 number of application domains, building on their unique data and pre-existing 
 capabilities. The combined capabilities of data science and domain-specific know-how 
 can solve important scientific and social problems and have commercial value. 

 2.  Advancing Data Science  : Some domains possess advanced  methods for dealing with 
 their data. Data science benefits by incorporating these methods and then making them 
 available for wider use. For example, petabyte-scale datasets generated by experiments 
 in physics, astronomy, and biology led to inventing new data science techniques. 

 3.  Building Coalitions  : Data science operates in a societal  context. Making sure we “get it 
 right” requires partnerships which must include viewpoints from non-STEM domains 
 such as sociology, law, economics, philosophy, and political policy. Good solutions can 
 have great societal benefit, while poor ones can cause harm. 

 This chapter's title includes the term  transdisciplinary  to emphasize that data science has been 
 able to achieve its theoretical, methodological, and practical results by combining the 
 approaches of different disciplines to create a new field.  F  This combination is needed not only 6

 for data science’s core disciplines, but also for its application areas and the fields that influence 
 its proper use. 

 2.1 New Application Areas 

 We use two approaches to illustrate data science’s broad applicability. First, we discuss data 
 science’s relevance to each economic sector. Second, we consider its relevance to academic 
 research areas. 

 For the first approach, we divide the entire economy into major buckets, using the US Bureau of 
 Economic Activity GDP Report as a guide.  72  Despite  the data’s US-centricity, the categories of 
 economic activity are probably representative of most economies, and an analysis shows 
 existing and growing data science roles in each one.  Table 2.1  lists the categories and a few 
 example data science applications for each. 

 6  Multidisciplinary  is when different fields separately  contribute their approaches to a problem. 
 Interdisciplinary  is when the approaches interact.  Transdisciplinary  is when a new field emerges from  that 
 interaction. 
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 Table 2.1 Components of the Economy and Data Science Applicability 

 Sector of US Economy  Areas of Data Science Applicability 

 Agriculture, forestry, fishing 
 Precision cultivation and harvesting, fishery management, quality 
 control, risk reduction 

 Mining  Predicting resource location, risk management, pricing 

 Utilities 
 Fault detection, optimized energy sources, production 
 automation, predictive maintenance 

 Construction  Scheduling, logistics, optimized design and materials use 

 Manufacturing - durable goods 
 Quality Control, production scheduling, automated design and 
 manufacturing, customer support 

 Manufacturing - non-durable goods  Risk management, logistics, demand prediction, pricing 
 Wholesale trade  Inventory management, demand forecasting, logistics 

 Retail Trade 
 Merchandising, advertising, pricing, upsell, loyalty programs, 
 inventory management 

 Transportation and warehousing 
 Optimized routing, storage, pricing, tracing, safety monitoring, 
 semi- and fully-automated vehicles, yield management 

 Information 
 Advertising, audience engagement, content moderation, 
 translation services, 

 Finance and Insurance 
 Risk assessment, portfolio construction, security, regulatory 
 monitoring 

 Real estate and rental and leasing  Construction, maintenance, & property mgmt., service automation 

 Professional, scientific, & tech. services 
 Mapping and surveying automation, new s/w development tools, 
 data-driven marketing, data-driven science 

 Management of companies & 
 enterprises  Decision support of all forms, improved communications 

 Other administrative services 
 Employee hiring and scheduling, automated transcription, 
 security monitoring, credit scoring 

 Education, health and social assistance 
 Personalized education, remote health monitoring, disease 
 diagnosis, social service delivery, fraud detection 

 Arts, entertain., recreation, food services 
 Personalization, pricing, upsell opportunities, automation, 
 immersive experiences 

 Other highly diverse services  Fault diagnosis, dating services, locating civic needs, fund-raising 

 US national government defense 
 Logistics, guidance and targeting, decision support, maintenance, 
 readiness, cybersecurity, wargaming 

 US national government non-defense  Tax audit, civic outreach, societal and economic monitoring 

 US state and local government 
 Maintenance operations, educ, programs, criminal justice system, 
 monitoring service fairness 

 This  first  column  divides  the  breadth  of  economic  output  into  buckets.  These  come  from 
 the  Bureau  of  Economic  Research,  which  sources  them  from  the  North  American 
 Industry  Classification  System.  73  The  second  column  is  an  eclectic  list  of  data 
 science-enabled applications, either existing or soon to be likely. 

 While this book provides detailed examples from many of the areas, we have inevitably omitted 
 some. Among others, we do not devote much attention to data science's many uses in national 
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 defense-related topics such as logistics, guidance and targeting, decision support, maintenance, 
 or cybersecurity. We also don’t discuss uses in precision agriculture, factory automation, 
 building management, optimizing social service delivery, and so on. 

 For the second approach (relevance to academic research areas), we consider the role of data 
 science in the various university education and research disciplines. Below, we discuss science, 
 social science, engineering, and the humanities. 

 2.1.1 Sciences 

 The sciences have been a major source of data science use cases. As data becomes easier to 
 use, scientific models have become more complex and highly tuned to real world inputs. In 
 some cases, data science has automated the process of creating models. 

 As an example, efforts to combat the COVID-19 pandemic show data science's increasing role 
 in biomedical and social applications. Vaccine development and deployment could not have 
 happened as quickly without pre-existing infrastructure, tools, and data ready to be used in a 
 new situation: 

 ●  Genetic and protein structure databases and other tools for simulating structure 
 facilitated the rapid decoding and promulgation of the underlying SARS-CoV-2 genetic 
 structure. 

 ●  Tools were in place to manipulate this genetic data. 
 ●  Large scale data management technologies were used to rapidly create, locate, 

 manage, and monitor well-structured clinical trials. 
 ●  Logistics data and algorithms helped plan and control the complex supply chain for 

 vaccinating large populations. 

 On the other hand, our COVID-19 experience showed some data science weaknesses: in 
 particular, limitations in our ability to draw conclusions from public health monitoring and 
 prediction. We give examples of these and other weaknesses throughout this book. 

 Aspirationally, Turing Award winner Jim Gray proposed a new model for scientific research, 
 which he termed  the Fourth Paradigm  , in a talk at  a 2007 National Academies meeting. In it, he 
 talked about how science can increasingly benefit from new tools and techniques for data 
 capture, analysis, and communication/publication. Gray was first and foremost a computer 
 scientist specializing in databases, but he became involved in projects at the borders of 
 astrophysics, mapping, and computer science. This led to his advising scientists in many 
 disciplines on their growing data-related problems. As captured and edited by colleagues at 
 Microsoft Research, Gray said: 

 The new model is for the data to be captured by instruments or generated by simulations 
 before being processed by software and for the resulting information or knowledge to be 
 stored in computers. Scientists only get to look at their data fairly late in this pipeline. 
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 The techniques and technologies for such data-intensive science are so different that it 
 is worth distinguishing data-intensive science from computational science.  74 

 Science is increasingly moving in this direction, particularly with the rapid growth in machine 
 learning capabilities. As an example, scientists trained a neural network on thousands of 
 molecules with known antibacterial properties. They then applied that network to a dataset of 
 over six thousand compounds with potential antibiotic activity. This approach quickly uncovered 
 a potential new drug, Halicin, for treating certain antibiotic-resistant bacteria.  75  While this 
 data-centric approach is capable of screening far more than six thousand compounds and 
 preliminary laboratory studies showed positive results, this particular drug may well encounter 
 roadblocks on the path to approval.  76 

 2.1.2 Social Sciences 

 Much of the social sciences involves gathering and analyzing data. In economics, this was 
 traditionally confined to the subfield of econometrics, which Samuelson explained as enabling 
 one to “apply the tools of statistics ... to sift through mountains of data to extract simple 
 relationships.”  77  However, today data science more  broadly impacts all of economics. The 
 related area of finance has been at the forefront of using large datasets and sophisticated 
 predictive models in diverse applications. We present specific examples from economics and 
 finance in  Section 6.5 

 In broader society, governments have always needed information about their populations. For 
 example, at the most basic level they need to count their people and collect taxes. They collect 
 a great deal of other information as well; for instance, labor statistics, transportation statistics, 
 and health data. From the other side, voters are interested in the results of pre-election polls. 
 Polling agencies, and social media platforms also collect a great deal of political and 
 sociological data. More and more, information gathering underlies societal systems. We discuss 
 some examples of political and governmental data science in  Section 6.6  . 

 In the future, perhaps all economic transactions will be digital, and physical currency will no 
 longer be used. (China's early 2020’s experimentation with a national digital currency may 
 foreshadow this.) Economists may be able to measure and track all financial flows, and offer 
 new mechanisms for economic governance. In a very ambitious proposal, data scientists and 
 economists hypothesize that data science results could dynamically set tax policies to more 
 efficiently balance revenue and equity objectives, as discussed in  Section 6.5  .  78  A related, much 
 simpler, present-day example is congestion pricing, in which highway tolls vary to reduce 
 congestion and motivate use when there is extra capacity. 

 2.1.3 Engineering 

 Engineering disciplines abound with data science use cases, both in the design of new products 
 and services and the efficient operation of complex systems. For the former, data science and 
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 machine learning are the basis of GitHub Copilot, which assists programmers.  79  Google 
 researchers have developed a system that learns to do the physical layout of devices on 
 computer chips.  80  Civil engineers are likewise researching  similar approaches to design far 
 larger structures made of steel rather than silicon. Many engineering challenges, such as 
 speech recognition as discussed in  Section 4.2  and  Section 5.2  , were practically unsolvable 
 until we applied data driven approaches to them. 

 In the domain of engineering operations, data, often directly provided by embedded 
 instrumentation, can predict maintenance needs, provide early warnings of failures, and 
 optimize system operations for applications including cars, power grids, rails, naval propulsion 
 systems, jet engines, and many more. Neural networks can classify work orders and optimize 
 environmental and power systems. Continual anomaly detection is at the heart of many 
 computer security systems, whether they are looking for operational failures or intrusions. 

 2.1.4 Humanities 

 In the humanities, applications have been slower to come into common use. The earliest days 
 of computers did see occasional projects to connect digitized data with literature, art, and 
 history. These early, one-of-a-kind, efforts all focused on single works. As large web-based 
 archives of books and images were built, interest grew substantially in applying data science 
 tools and techniques. Circa 2010, academicians began to recognize the opportunities,  81  and the 
 US National Endowment for the Humanities launched its Digital Humanities Initiative. In 2009, 
 the National Science Foundation (where co-author Jeannette was working at the time), in 
 partnership with the National Endowment of Humanities, the Joint Information Systems 
 Committee of the UK, and the Social Sciences Research Council of Canada, launched a 
 “Digging into Data” challenge. It asked the question “What could you do with a million books?.”  F 7

 It continues to this day, with 17 additional international partners. 

 Leveraging the millions of Google-scanned books, Google Research gave out awards in the 
 digital humanities,  82  initially focusing on text analysis.  JB Michel et al. (including co-author Peter) 
 used the Ngram viewer’s frequency count of words or phrases in millions of books to gather 
 insight on many societal or linguistic changes, ranging from the impact of censorship on books 
 published to the rate at which irregularly conjugated English verbs change to become regularly 
 conjugated.  83 

 Matt Connelly, circa 2015, created the History Lab Project at Columbia, which maintains the 
 world’s largest collection of declassified documents and lets researchers analyze them using 
 data science techniques.  84  Legal scholars are analyzing  the tens of millions of online court 
 judgments released by China since 2014, to better understand the Chinese legal system and its 
 rulings and consequences.  85  Many projects now geocode  large numbers of records, placing 

 7  A million books may not sound like a lot, but reading a book a day from birth to age 100 only amounts to 
 36,525 books (give or take a day for leap years). 
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 people, historical events, or statistical measures on a map to provide insight or bring history to 
 life. The Smithsonian Collections Search Center is an online catalog with 17.2 million records, 
 “records relating to areas for Art & Design, History & Culture, and Science & Technology with 
 over 6.6 million images, videos, audio files, podcasts, blog posts and electronic journals.”  86 

 We could discuss many more applications in virtually every domain. We conclude this section by 
 observing that data science's applications are broad and growing, while requiring the fusion of 
 data science and discipline-specific capabilities to achieve their goals. 

 2.2 Advancing Data Science 

 As other fields address their data-related problems, they often end up making their own 
 important contributions to data science. Necessity being the mother of invention, if a new 
 problem requires a new capability, the field may be rapidly advanced. 

 A great example of a new capability coming out of physics is the World Wide Web (WWW). Sir 
 Tim Berners-Lee created what became the WWW to help the greater CERN supercollider 
 research community communicate and collaborate. It turned out this was such a good idea that 
 it rapidly caught on elsewhere and became a fundamental pillar of both data science and our 
 everyday lives. As another example, many important technologies for efficient pattern matching 
 came from computational biologists' need to match nucleic acid sequences. Finally, social 
 scientists’ need for census data is forcing consideration about making aggregations of data 
 broadly and accurately available while still preserving privacy. We have a new understanding of 
 privacy-preserving data aggregation – regrettably, one showing its difficulty. 

 Soon after the World Wide Web became available to the general public, online advertising 
 became a big business. Advertising fees paid for the growth of many well-known internet 
 services and also brought huge attention and money to data science. Deciding what ad to show 
 to a viewer is a data science problem; there is data on what the current user is searching for the 
 pages they have been browsing, and there is past data on what similar users have done in the 
 past. Economists contributed by introducing data scientists to algorithmic game theory. Among 
 other things, this helps determine what auction style is best for selling ad space, balancing 
 interests of consumers, sellers, and web publishers. 

 2.3 Building Coalitions 

 Data scientists need to partner with many other disciplines to ensure their resulting work will be 
 maximally beneficial, societally acceptable, or perhaps even legal. Here are six examples: 

 ●  Philosophers  can help frame ethical considerations  about data science work, including 
 issues of privacy, free will, and fairness. These will be considered throughout this book, 
 starting in the next section, as we lay out an ethical framework. 

 ●  Lawyers  ,  politicians,  and  political scientists  can  help with the legal and policy issues 
 relating to data stewardship and the governance of data-intensive applications. Public 
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 opinion can be strongly influenced by information publishing and recommendation 
 systems 

 ●  Designers  and  psychologists  can help data scientists  present aesthetically pleasing 
 and accessible results that users find easy to understand and use. 

 ●  Economists  (in microeconomic, behavioral economics,  and more) bring economic 
 modes of analysis to data science problems that can help achieve efficiency or fairness. 

 ●  Sociologists  provide insights for new ways to study human behavior and social 
 relationships using data from large digitally-connected social networks. 

 ●  Journalists  can aid data science’s goal of explanation  so it emphasizes truthfulness and 
 is valuable to users and society. Computing a number or displaying a bar graph is not 
 enough; the results need to tell a coherent and truthful story. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  43 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 Chapter 3. A Framework for Ethical Considerations 

 Data-empowered algorithms are reshaping our professional, personal, and political realities, and 
 they are likely to have an even larger effect going forward. However, as with all developing 
 technologies, increases in impact inevitably give rise to unanticipated consequences. These 
 challenge our norms for how we use technology in ways consistent with our values. Many 
 scholars, educators, and technology companies refer to these as  ethical challenges  ,  building 
 on the applied ethics tradition from basic sciences. 

 Some challenges are best met by inventing improved or more nuanced technological 
 approaches. However, many challenges will still arise based on how we deploy technology as 
 products, or how statistical analysis interpretations guide law and policy. 

 While the word  ethics  may imply a branch of somewhat  obscure philosophy, the applied ethical 
 tradition is about both defining ethics and designing ethical processes clearly enough to help 
 guide good choices. In the case of data science, it is also to develop programs that make good 
 choices. 

 3.1 Professional Ethics 

 Companies and professional societies, including the American Statistical Association (ASA), the 
 Institute for Operations Research and the Management Sciences (INFORMS)  , the IEEE, the 
 Association for Computing Machinery (ACM), and Engineers Canada have long had important 
 and useful ethical codes addressing matters of personal conduct and technical execution.  87–90 

 These include principles such as honesty, impartiality, and integrity. 

 The introduction to the ASA’s code observes, “The discipline of statistics links the capacity to 
 observe with the ability to gather evidence and make decisions, providing a foundation for 
 building a more informed society. Because society depends on informed judgments supported 
 by statistical methods, all practitioners of statistics–regardless of training and occupation or job 
 title–have an obligation to work in a professional, competent, respectful, and ethical manner.”  87 

 As the impact of statistics, operations research, and computing (and analogously, data science) 
 has grown, many of these codes are being generalized to include broader societal 
 considerations. Gotterbarn and Wolf write in a preamble to the 2018 ACM Code of Ethics that, 
 “we find ourselves in situations where our work can affect the lives and livelihoods of people in 
 ways that may not be intended, or even be predictable. This brings a host of complex ethical 
 considerations into play.”  91 
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 3.2 The Belmont Commission 

 In the human subjects research community, the  Belmont  Report  is the central document of 
 applied ethics in biomedical and behavioral research. In it, ethics is defined in terms of general 
 principles.  92  The Belmont commission met monthly for  four years in response to the 1932-72 US 
 Public Health Service Syphilis Study at Tuskegee, a morally and scientifically flawed medical 
 experiment. By including commissioners from a wide range of fields, including researchers, 
 lawyers, administrators, and philosophers, the organizers hoped to protect human subjects 
 while balancing societal norms, legal constraints, and society's need for innovation. 

 Despite its roots in human subjects research context, the report outlines principles that are 
 sufficiently general to be a basis for a useful ethical framework for data science research and 
 products. In Belmont, these principles are called “respect for persons, beneficence, and justice.” 
 In more detail, they were then framed as: 

 ●  Respect for persons.  This means ensuring the freedom  of individuals to act 
 autonomously based on their own considered deliberation and judgements. Often 
 summarized as informed consent, this principle also includes having sufficient 
 transparency to make judgements and also defending the autonomy of those with 
 diminished consent, e.g., children or those who may be coerced into making a decision. 

 ●  Beneficence.  Belmont encourages researchers  not  to  limit their thinking to "do no 
 harm," but to maximize benefits and balance them against risks. Doing so requires 
 careful consideration of the immediate risks and benefits as well as a commitment to 
 monitor and mitigate harms as results occur. 

 ●  Justice.  The consideration of how risks and benefits  are distributed, including the notion 
 of a fair distribution. Fair may not mean “equal” but rather that the risks are borne by the 
 populations who stand to benefit (and are not born by populations who will not ultimately 
 have access to the fruits of the research). 

 These principles are intended to be broad and therefore applicable to yet unenvisioned 
 technology changes and their consequences. At the same time, they are intended to be 
 sufficiently specific that communities can come to a shared, deliberative consensus as to their 
 implied best actions. In other words, from general, common principles, a community derives 
 more context-specific standards and instance-specific rules. For a technologist, these rules 
 imply even more specific design choices in modeling or in data product development. 

 This principled approach to ethics does not offer a single all-encompassing checklist that one 
 consults for an answer that is the same in all contexts. Instead, principles are, by design, in 
 tension with each other. They provide a basis to ask specific questions, which often do not have 
 a right or wrong answer, but illuminate the tension in a situation or between positions. 
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 3.3 Belmont Application to Data Science 

 The breadth of data science’s impact argues for applying Belmont-like principles to it. Numerous 
 scholars,  93  researchers, and technologists have suggested  how these principles can guide 
 applied ethics even in the context of data-empowered algorithms. They sometimes also argue 
 for extending the principles to emphasize the impact on society at large.  94,95  However, as 
 Belmont frames them, the principles provide a common vocabulary for researchers, data 
 scientists, product developers, and regulators with which to reach consensus. 

 As co-author Jeannette writes in her 2020 essay,  10  Research Challenge Areas in Data Science  : 
 "The ethical principle of Respect for Persons suggests that people should always be informed 
 when they are talking with a chatbot. The ethical principle of Beneficence requires a risk/benefit 
 analysis on the decision a self-driving car makes on whom not to harm. The ethical principle of 
 justice requires us to ensure the fairness of risk assessment tools in the court system and 
 automated decision systems used in hiring."  96 

 Another voice in this area comes from the European Commission, the executive branch of the 
 European Union. Their  Ethics guidelines for Trustworthy  AI  shows that the need for ethical 
 frameworks in technological areas is recognized by world governments, as well as researchers 
 and ethicists.  97 

 We, of course, accept there are distinctions between data science-oriented implications of 
 Belmont and human subject research, in particular medical research. In medical research, the 
 principles motivate standards such as  informed consent  (a process of disclosing risks and 
 benefits to an individual before gaining approval) and  fair selection of subjects  . 

 However, the digital domain can have different standards that are also consistent with the 
 Belmont Principles, often because algorithms initiate automated actions. Here are some 
 example considerations: 

 ●  Informed consent is hard to achieve in our current digital environment. To use a digital 
 product, users must click “I agree,” most often without comprehending the long and 
 complex terms of service authorizing software actions over an extended period. Barocas 
 and Nissenbaum identify “complex data flows” such as in digital services as possessing 
 what they term a  transparency paradox  .  98  They argue  that information disclosure 
 provided to users is so simple as to be incomplete or deceptive, or it is so complex as to 
 be incomprehensible. Data scientists adhere best to informed consent by respecting 
 user norms at a level of transparency that avoids deception or unfairness, while allowing 
 more detailed auditing and critique (e.g., via appropriate technical documentation or 
 open source). 

 ●  For software, the risk-benefit balance of beneficence includes thinking through 
 unintended consequences. It also requires the humility to recognize how hard it is to 
 anticipate all the ways people will experience or use a product. That requires a 
 commitment to monitor and mitigate harms as they are revealed. 
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 ●  Justice, in the context of data-driven products, includes ongoing assessment of their 
 fairness (technical and otherwise) as well as their training datasets. Justice includes 
 fairness, with the understanding that defining “fair,” even in technical communities, can 
 be subjective,  99  and is not as simple as giving it  the same meaning as “equal.” Our 
 norms of justice also include an understanding of addressing and redressing prior 
 harms, where possible. We say much more on fairness in  Section 12.3  . 

 We use the Belmont Principles to organize the analysis of several case studies in  Part II  . We 
 then address the challenges to aligning ethics with a university’s or technology company's data 
 scientists’ operational process in  Part III  .  Part  IV  contains recommendations on how to proceed 
 in the future. 

 While the Belmont Principles are our ethical starting point, we recognize that applications of 
 data science may also require other ethical principles. For example, the principles of justice of 
 war (  jus ad bellum  ) and the conduct of war (  jus in  bello)  are relevant to data science 
 applications in military domains.  100  Furthermore,  data science is a sufficiently new field that we 
 may eventually need to identify new relevant principles for its ethics. 
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 Recap of Part I – Data Science 

 Data science has advanced in large part by pooling techniques and goals from statistics, 
 operations research, and computing. In turn, these fields have changed due to data's impact. 
 Continual learnings from these fields and others are further improving data science. Data 
 scientists increasingly must consult other disciplines to craft solutions that meet the needs of a 
 broad coalition. 

 While data science does not solve all problems, it has already had extraordinary impact, with its 
 full potential yet to be realized. With improved processing of ever larger amounts of data, data 
 science will continue to grow in importance and performance. A field of study is in part defined 
 by its most important terms, so we conclude this section by reviewing sixteen terms we think are 
 critical to understanding data science. 

 Table I.1  reiterates our introductory section's five  key terms. 

 Table I.1 Key Terms from the Definition of Data Science 

 Data science  The study of extracting value from data, as insights or conclusions. 

 Insights  Understanding what may arise from a new hypothesis that can be tested against 
 data, from an apt visual chart, or from interactively exploring a complex model of 
 the data, or trying out different scenarios and seeing the implications. 

 Conclusions  Learnings from data science of the form of prediction, recommendation, 
 clustering, classification, transformation, or optimization. 

 Model  A representation of a subject system – an abstraction that emphasizes key ideas 
 about the system and ignores extraneous details. 

 Big data  A body of techniques for conceiving, designing, developing, and running systems 
 that gather, store, and process vast amounts of information. 

 Table I.2  reiterates three key statistics terms that  data science uses. Inference is absolutely 
 central to almost everything in this book, and understanding correlation and causation and their 
 differences is essential for effectively applying and understanding data science techniques and 
 results. 

 Table I.2 Key Terms from Statistics 
 Inference  The process of drawing conclusions about the properties of a population 

 or a system. Inference is often used to test a falsifiable hypothesis, which 
 is one which can be disproven. 
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 Correlation  The relationship between two variables. They could be positively 
 correlated (e.g., if one goes up, the other tends to go up), or negatively 
 correlated (if one goes up, the other tends to go down), or perhaps 
 uncorrelated (e.g., like the outcomes of rolling one fair die and then 
 rolling another). 

 Causation  The relationship where an intervention in one variable (“the cause”) 
 contributes to a change in the value of another variable (“the effect”). In 
 searching for causal relationships, we are aided by a search for a 
 mechanistic relationship between the cause and the effect, as in 
 smoking’s causal relationship with cancer, or the causal relationship 
 observed by John Snow between drinking water contamination and 
 cholera. Often, an interpretable relationship requires knowledge of one 
 or more intermediaries and a pathway; for example, water contamination 
 causing water-borne pathogens, and these pathogens causing cholera. 

 Excellent data science sometimes leads to understanding causation. 
 However, often experimentation outside the realm of an established body 
 of data is needed to definitely determine causation. It bears repeating 
 that correlation does not imply causation, but correlation is correlated 
 with causation. 

 Operations research contributes to the major data science focus of optimization as illustrated by 
 the terms in  Table I.3  : 

 Table I.3 Key Terms from Operations Research 
 Optimization  The selection of actions or values needed to generate a most desired 

 outcome, usually subject to constraints mirroring those in the real world. 
 For example, finding the shortest travel distance path for visiting 
 specified cities. Optimization may be subject to constraints, such as 
 travel time between any two cities not taking longer than a specified 
 value or vaccination availability being subject to certain fairness 
 constraints. 

 Objective function  Represents a precise statement of a metric on which different outcomes 
 can be compared, where a better outcome has a better value (which can 
 be higher or lower). Sometimes, this is very simple to state. For example, 
 in manufacturing one wants to maximize how many parts can be made 
 with a certain quantity of raw material. Objective functions can also be 
 limited by constraints, such as requiring equity across subgroups. 

 From computing,  Table I.4  includes three key terms: 
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 Table I.4 Key Terms from Computing 
 Algorithm  A clearly specified procedure that a computer can follow to perform a 

 task  . 

 Artificial 
 intelligence 

 The study and construction of programs that act intelligently. They 
 achieve their goals by examining their inputs and then taking appropriate 
 actions. 

 Machine learning  A process that uses data to automatically construct a program to operate 
 on future data–making predictions, optimizing, or classifying. 

 From our ethics discussion,  Table I.5  describes three  key terms motivating ethical 
 considerations when applying data science: 

 Table I.5 Key Terms from Ethics 
 Respect for 
 persons 

 Ensuring the freedom of individuals to act autonomously based on their 
 own considered deliberation and judgements. Often summarized as 
 informed consent  , this principle also includes having  sufficient 
 transparency to make judgements. 

 Beneficence  This emphasizes  not  merely “do no harm” but instead  seeks to maximize 
 the benefit from using data science both directly and for society at large. 
 Doing so requires careful consideration of the immediate risks and 
 benefits as well as a commitment to monitor and mitigate new harms as 
 results occur. 

 Justice  The consideration of how risks and benefits from using data science are 
 distributed. This includes the notion of a  fair  distribution.  Fair may not 
 mean “equal” but instead that benefits accrue according to factors such 
 as one’s effort, contribution, merit, or need. 
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 Part II. Applying Data Science 
 While we hope we have shown data science's wide and growing impact, we have yet to discuss 
 how data science “works” and how it should be approached. From diverse examples, we 
 provide an analysis rubric, illustrate its use in evaluating new data science applications, and 
 also exemplify the use of the ethical framework presented in  Chapter 3  . 

 In this part, we address these questions: 

 1.  How does data science solve some real-world applications?  In  Chapter 4  , we present six 
 examples that collectively give a good picture of how data science applies to a large 
 range of applications. Some of our examples, such as spelling correction and 
 recommendation engines, are part of everyday life. Others are at the forefront of science 
 and illustrate great opportunities to improve health or gain new knowledge about the 
 world. 

 2.  How can we determine if data science can help solve a problem?  In  Chapter 5  , we offer 
 our Analysis Rubric, a way of characterizing data science applications along seven 
 dimensions. We critically review our six example applications within the rubric's 
 framework, both to build understanding of it and to show the diversity of issues data 
 science application developers must consider. 

 3.  How should we apply data science to new problems and is it likely to work?  In  Chapter 
 6  , we use the Analysis Rubric to evaluate twenty-six  additional applications. Comparing 
 applications to rubric elements shows data science's trade-offs, capabilities, and 
 limitations. Our applications are from many different domains and range from 
 straightforward to rather infeasible. 

 4.  How broad is the range of data science problems?  Given  the thirty-one examples in this 
 part, we expand on the perspective provided by  Chapter  2  . 

 5.  How can the ethical framework of  Chapter 3  guide us  through data science's inherent 
 conflicts?  Armed with the principlist approach to  applied ethics advocated in  Chapter 3  , 
 Chapter 7  shows how the Belmont Principles can be  used to analyze data science 
 applications' ethical challenges. 

 This part concludes by looking ahead to how the Analysis Rubric and ethical framework 
 combine to motivate  Part III  's seven categories of  data science challenges. 
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 Chapter 4. Data Science Applications: Six Examples 

 In this chapter we present examples of what data science can do. For the technology, 
 healthcare, and science-related examples, we define the problem and then show how to collect 
 data, build a model, and use it to solve the problem. 

 We start with spelling correction, which is now so common that we hardly notice it. Its models 
 are simple and its objectives are clear. We follow with speech recognition, which also has clear 
 objectives, but requires considerably more complex models. In fact, speech recognition was 
 considered a grand challenge problem in AI for decades. It only became widely practical circa 
 2012 when vast amounts of data and deep neural networks were applied to it. 

 Our third example, recommendation systems, may be the single most widespread use of data 
 science. Recommendations have provided extreme value to companies and users alike, but 
 setting their objectives properly is hard and subject to controversy. There are also many 
 implementation challenges, which we will detail throughout this book. Of note, recommendation 
 systems often make use of all six types of conclusions (prediction, recommendation, clustering, 
 classification, transformation, and optimization) that data science offers. 

 Our fourth example, protein folding, predicts the shape of a protein just from the knowledge of 
 its amino acid sequence. Progress in this grand challenge biochemistry problem was slow until 
 2020 when a broad ensemble of models using extensive protein databases were successfully 
 applied. This problem differs from previous examples by the diversity and complexity of its 
 modeling and its audience of scientists, not end users. 

 Our fifth example is more general and presents the promise of using large quantities of 
 individualized health data to learn about and improve human health. While we show the 
 potential of data science in healthcare, we also illustrate the complexity of gaining meaningful 
 results. Whether due to data quality, privacy, complex models, or the difficulties in determining 
 causality, using healthcare records at scale is difficult. 

 The sixth and final example in this section is cautionary and relates to predicting mortality during 
 the COVID-19 pandemic. Despite high stakes, high visibility, and a great deal of data, 
 epidemiologists and data scientists have had very limited success in predictions beyond a few 
 weeks. 

 4.1. Spelling Correction 

 People make spelling mistakes; about 1% of words in documents are misspelled, as are almost 
 10% of words in internet search queries. With the help of data science, word processors and 
 search engines can address spelling mistakes in three ways: 
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 ●  As a classification task: Misspelled words are identified, perhaps with squiggly red lines, 
 ●  As a recommendation task: Possible corrections are presented to the user to choose 

 from, or 
 ●  As a transformation task: Misspelled words are automatically replaced with corrections. 

 The  dictionary approach  to spelling correction, introduced  in the 1970’s, starts with a 
 dictionary of correctly spelled words. Then, for each word in a document or query, check if it is in 
 the dictionary, and if not, the system can either flag it, make a recommendation, or correct it to 
 the closest dictionary word. In this case, the phrase “dalmation dogs” might just be corrected to 
 “dalmatian dogs,” since “dalmatian” is the dictionary word closest to “dalmation” at only one 
 replacement letter away. 

 However, the dictionary approach has limitations. There are many things a dictionary does not 
 cover. It may not have the latest slang words, nor proper names, so it can’t help with “covidiot,” 
 “Shia Saide LaBeouf,” or “Huawei.” A dictionary-based corrector will say that every word in 
 “from me too you” is a proper dictionary word. Of course, “too” should be corrected to “to,” 
 based on the context. And finally, a dictionary approach is not sensitive to the fact that different 
 input methods produce different types of errors. For example, typing on a standard keyboard 
 often leads to misordered characters (like “teh caret”) while dictation instead often leads to 
 homophone errors (“the carrot”). 

 Because of these limitations, spelling correction has shifted to  data-intensive approaches  . A 
 common data source is a  corpus  (or body of written  text) compiled from text published on the 
 internet. Although published text is not perfect–it may contain its own spelling errors–it has the 
 advantages of showing words in context and of including new words as soon as they appear in 
 the language. 

 An international company that deals with 100 different languages and multiple sublanguages 
 (e.g., British and American English, formal academic prose, and text messages) might find it 
 tedious to maintain a dictionary for each one. It is much easier to gather a relevant corpus for 
 each new use case than to hire a team of lexicographers to produce dictionaries for them. 

 Deciding that “beleif” should be corrected to “belief” and “dalmation” to “dalmatian” is easy 
 because no other words were just one transposition or one substitution away. Other cases are 
 not so clear-cut. What should “teh” be corrected to? It is a transposition away from “the” and a 
 substitution away from “ten,”“tea,” “peh,” and a dozen other words. Deciding which is most likely 
 depends on two factors. 

 1.  What word did the author likely intend? Corpus data can tell us that “the,” English's most 
 common word, is very likely and “peh,” the 17th letter in the Hebrew alphabet, is rare 
 and thus unlikely. Corpus data can also use the context from surrounding words; “in teh 
 first place” suggests “the,” while “teh, Earl Grey, hot” suggests “tea,” based on phrase 
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 frequency in the corpus. 
 2.  How likely is the user to incorrectly type “teh,” given the intended word? The corpus 

 alone can’t tell us, but we can create a model that says that similar-sounding syllables, 
 such as “tion” and “tian,” are often confused, as are adjacent letters on the keyboard, 
 such as “h” and “n.” The model can learn from user interaction. Every time the user 
 accepts a suggested correction, we can add to a new database of [  typo  →  correction  ] 
 pairs. We will find that [“teh” → “the”] appears frequently, and [“teh” → “peh”] does not. 
 This database can be personalized for each user. Or it could be anonymized and 
 shared, so everyone contributes to and gets better spelling correction suggestions. 

 How fast can we assemble this user-interactions database? Suppose a search engine 
 processes a billion queries a day, and .0001% of them mention a new celebrity or product. This 
 would be more than a thousand new examples every day! Lexicographers trying to do this 
 manually could never keep up. Once a model is created, it can be shared by all users of a 
 language with some minor variations; e.g., British and American spellers disagree on “colour” 
 versus “color”; users in one city might refer to “Clark Ave” and another to “Clarke Ave.” 

 Spelling correction is a good application of data science for several reasons. It shows the 
 usefulness of gathering publicly-available data from one source to use for another purpose, as 
 well as the ease of creating a new database from user interactions. Privacy concerns are 
 relatively easy to address because personally identifiable data need not be retained. Making an 
 occasional mistake costs little, because the user is still in charge and can correct it. 

 4.2. Speech Recognition 

 Automated speech recognition (ASR), sometimes called speech-to-text, is the task of 
 transforming an audio spectrum to digitized text. It has been of enormous interest to 
 technologists and the general public for decades due to its many use cases, including taking 
 dictation, automating call centers, enabling hands-free voice interaction with computers or 
 appliances, captioning videos, and motivating great robots in Hollywood movies.  101 

 Speech recognition is a much harder problem than spelling correction for several reasons. 

 ●  Speech is analog and each person’s speech is a little bit different, whereas every typist 
 who transposes the “ie” in “belief” ends up with exactly the same result, “beleif.” 

 ●  Speech has systematic variation due to different accents, mixed language, speech 
 impediments, random variation due to background noise, and multiple people speaking 
 at once. 

 ●  Speech has ambiguity due to homophones as well as the absence of capitalization and 
 punctuation. 

 ●  Transcription errors can be distracting to users, but are usually not life-threatening. Risks 
 related to errors, could prevent ASR’s use in applications where an error would cause 
 great harm. 
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 As with spelling correction, early approaches relied on expert linguists. They wrote rules to 
 define several steps in the speech recognition process pipeline; from acoustic signals to 
 phonemes, from phonemes to words, and from words to sentences. This pipeline let linguists 
 contribute their knowledge about language, but because each component was defined 
 independently, errors propagated between components without correction. 

 By 1980, the field had shifted to automatically learning a speech model from data. Like spelling 
 correction, it used statistics of past frequencies to analyze novel speech sounds. IBM speech 
 researcher Frederick Jelinek jokingly said, “Anytime a linguist leaves the group the recognition 
 rate goes up.”  102 

 For speech recognition, the data are parallel corpora of speech spectrums aligned with 
 transcripts of the spoken words. The most valuable data (and most expensive to produce) is 
 aligned word-by-word, but models also use sentence-by-sentence aligned and non-aligned 
 samples. 

 In the 1980’s, only people with a compelling need for the technology were willing to deal with 
 speech recognition systems' idiosyncrasies, which included a tedious training period. Continuing 
 improvements were made year by year, but the real breakthrough occurred in 2009, when 
 Geoffrey Hinton of the University of Toronto and two of his students demonstrated the 
 effectiveness of deep neural networks for speech recognition.  103  Research teams at Microsoft, 
 Google, IBM, and other institutions immediately jumped on this approach, which quickly resulted 
 in a pronounced performance improvement in commercial systems. The single change of 
 introducing deep neural networks was more effective than all of the previous decade’s work.  104 

 At first the deep networks just replaced and improved individual components in the pipeline. 
 However, by 2015 the whole pipeline had been replaced with an end-to-end neural network. 
 One particular advantage of this approach was that early processing errors were carried forward 
 in such a way that later parts of the network could correct the errors, in contrast to the error 
 chains that linguists’ pipelines allowed. 

 No two speech recordings are identical, but speech recognition systems can generalize, taking 
 a novel audio spectrum and comparing it to its model of previously-heard audio spectrums, then 
 outputting a transcript–even if the model had never heard that word sequence. With a good 
 microphone, a careful speaker (with an accent sufficiently represented by training data), and 
 minimal background noise, systems (as of 2022) make an error once every 30 or 40 words. 

 Just as in spelling correction, dynamic training can improve a speech recognition system's 
 quality. Systems can learn to compensate for accents or microphone properties. They learn not 
 only from recorded training data, but also from user-supplied corrections to system errors. As 
 with spelling correction, a single system can be trained to recognize a hundred or more different 
 languages. 
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 We now use speech recognition for captioning videos, controlling home and automotive devices, 
 and doing dictation  whether on computers, smart phones, appliances, or through smart  – 
 assistants like Siri, Alexa, and Google Assistant. Speech recognition provides greater 
 accessibility to hearing impaired people, brings people of different cultures together with 
 voice-to-voice translation systems, and perhaps even (someday!) will help call centers provide 
 faster and better customer service. 

 In all, speech recognition quality has become so good that billions of people use it as an 
 everyday part of their lives, so it now benefits from the virtuous cycle of increasing usage 
 generating more data that improves quality and garners more usage. Like spelling correction, 
 it’s a good example of data science but one that is significantly more complex in many 
 dimensions including data gathering, modeling, breadth of application, and toleration of failures. 

 4.3. Music Recommendation 

 One of data science's most widespread uses is in recommendation systems. These systems 
 recommend a user's next song, movie, book, app, or romantic partner. When someone browses 
 a shopping site, the system suggests products they might like. On a news site or social network, 
 they determine what stories to present users. 

 Users depend on recommendation systems, because the web has grown so large that no one 
 can sift through all the available information on their own. Recommendation systems are also 
 crucial to the web's business model; better recommendations make for more subscriptions and 
 purchases. Web advertising is in part a recommendation problem–one that must satisfy many 
 different goals. 

 We focus on  music recommendations  as a representative  example. With vast cloud-based 
 music libraries at our disposal, including artists we have never heard of, recommendations truly 
 help us find our way. How do we get recommendations of songs that we actually want to hear? 
 The recommendation system builds a model from three types of data: a song's waveform, a 
 song's metadata (title, artist, genre, composer, date recorded, length, etc.), and listener 
 reactions. A “reaction” may be passively listening to the currently playing song, or it may be 
 actively starting, skipping or replaying a song, or rating it with a star or a thumbs down. 

 A song's waveform can be analyzed for tempo, beat, timbre, and other factors. The system can 
 recommend a song with similar features to songs that the user has previously liked or, for 
 variety, perhaps recommend a contrasting song. The recommendations can be specialized for 
 activity or time of day; perhaps fast, energetic songs for exercising and slow mellow songs at 
 the end of the day. 

 Metadata can be applied in many ways and even extended to permit creation of predictive, 
 semantic relations between its entities. For example, a system could scan Wikipedia and other 
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 sources to learn that Telemann and Vivaldi lived at about the same time, Haydn taught 
 Beethoven, Ringo Starr was a member of the Beatles, and Ramblin’ Jack Elliott covered 24 Bob 
 Dylan songs. If someone likes Telemann, Haydn, Ringo, or Dylan, they probably, respectively, 
 also like Vivaldi, Beethoven, the Beatles, or Elliott. 

 User reactions help resolve the serious complication that different users should get different 
 recommendations. There is no universally-accepted “correct” recommendation in the way that 
 there is a correct spelling of a word. Potentially every user needs a different recommendation 
 model, rather than using a single shared model. This has two key implications: 

 ●  The system must ensure the privacy and security of each user's personal data. 
 ●  The data will be sparse. A large company with a billion users could gather enough data 

 to build a good spelling correction system in a few days. But that is not nearly enough 
 data to make good music recommendations. They would have billions of user reactions, 
 but only a few for each user. A spelling correction system only has to learn about 
 100,000 words, but a large music recommendation system has to learn a billion users’ 
 preferences for each of a million songs–a quadrillion total preferences. 

 So, if a system has zero observations of a particular user  reacting to a particular song, how can 
 the system decide whether to recommend the song? The key is that it has many examples of 
 similar  users reacting to  similar  songs. The technique  called  collaborative filtering  builds on 
 this idea to examine the songs a listener has liked (or disliked), and compares them to every 
 other listener’s reactions. When it finds a similar history, the songs that the user likes can be 
 recommended to each other. 

 To improve both efficiency and the ability to generalize, a system can group together both 
 similar songs and similar users. A user might belong to groups for “cool jazz” and for “60’s 
 female Broadway vocalists.” A machine learning system wouldn't know those groups by those 
 names, but rather by their shared collection of numerical and categorical features. The 
 important point is that when some group members agree on a new discovery, it becomes 
 available to all the other group members. Many companies use collaborative filtering, with 
 Amazon and Netflix particularly well known for it. 

 A second technique to address the "cold start" problem of new users (or new items), is to 
 explicitly pose the recommendation problem as one of  stochastic optimization  or 
 reinforcement learning  . For example, in the domain  of news, many techniques have been 
 developed in the last decade for trying to find the right combination of attributes of the 
 always-changing news stories, users, and their reading histories to maximize the click-through 
 rate.  105,106  These approaches balance the twin goals  of enabling a reader to explore new stories 
 while leveraging popularity. 

 Music recommendation methods are metaphorically similar to those that underlie quantitative 
 approaches to investment management: 
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 ●  Momentum investing based on understanding what others are doing is analogous to 
 collaborative filtering. 

 ●  Fundamental investing based on knowledge of an investment’s business is analogous to 
 using semantic knowledge. 

 ●  Technical investing based on raw stock prices and market volumes is analogous to 
 musical signal analysis. 

 Quantitative investment applications, like recommendation systems, can also learn from their 
 success or failure and feed that back into future decision-making. 

 Our discussion of music recommendation systems shows that they may make use of all the 
 conclusion types listed in  Chapter 1  to make their  own recommendation conclusion: 

 ●  They may  predict  what a user will like or not like. 
 ●  They may  cluster  users or songs into groups, to identify  like elements or to do better 

 collaborative filtering. 
 ●  They may  classify  songs by genre to make better recommendations  or use as part of the 

 user interface. 
 ●  They may  optimize  customer satisfaction subject to  meeting certain constraints, such as 

 presenting sufficient new material or maximizing revenue. 
 ●  They may  transform  signals into a new form. For example,  they may transform audio 

 signals into a set of features to allow better comparison of music’s sound. 

 Music recommendations are greatly differentiated from the previous examples by their diversity 
 of models, types of conclusions, and the complexity of setting objectives. (See the case study of 
 Pandora’s approach as an example.  107  ) Many-model systems  of this kind will be much larger, 
 harder to maintain, and harder to debug. We will return to recommendations throughout this 
 book due to their broad applicability, their financial importance, the challenges in setting their 
 objectives, and their diversity of techniques they employ. In particular,  Section 6.2  and  Chapter 7 
 discuss news recommendations. 

 4.4. Protein Folding 

 A human protein is a stringy chain of amino acids connected in a specific order. As postulated 
 by Anfinsen in his 1972 Nobel Lecture,  108  the identity  and order of the amino acids determines a 
 protein’s shape. We also know that shape largely determines how the protein functions and 
 what it does. Protein shapes can often be experimentally determined with techniques like X-ray 
 crystallography, nuclear magnetic resonance, and cryo-electron microscopy. However, due to 
 this work's time and expense, only about 100,000 protein structures have been determined out 
 of the billions known to exist. 
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 This motivates one of the greatest biochemistry challenges, the  protein folding problem, 
 which in part aims to predict the 3D structure of proteins directly from sequence data. More 
 easily discovering protein structures would greatly benefit the life sciences, providing better 
 understanding of many diseases and faster drug discovery. To calibrate the problem's scale, 
 humans have twenty different amino acids and a protein is made up of tens to thousands of 
 amino acids, and a protein could be in over 10  100  possible shapes. 

 At first, scientists attempted to solve this structure prediction problem by building on 
 fundamental physical principles. These so-called ab initio techniques provided some insight but 
 proved computationally challenging for even the largest computers, peer-to-peer networks, and 
 specialized hardware architectures. Levinthal’s paradox contrasts the vast computational 
 difficulty of ab initio modeling against how easily proteins fold in nature. This disparity (“if nature 
 can do it”…) has led many to believe there must be efficient approaches. 

 Such approaches have begun to appear based on models using (i) machine learning trained on 
 known protein sequences and structures in combination with (ii) underlying physical principles. 
 In 2020, at the 14th biennial CASP (Critical Assessment of Protein Structure Prediction) 
 competition, DeepMind's AlphaFold2 software used such an approach and achieved results 
 having similar quality to those using laboratory techniques.  109  Combining several types of deep 
 network architectures, the system produces predictions in minutes to hours of GPU processing. 
 While we don't know how well the results will generalize, AlphaFold 2’s result is a clear turning 
 point in the protein folding problem's nearly 50-year history. 

 In July 2021, DeepMind released all of AlphaFold 2’s documentation, models, code, and training 
 data for others to scrutinize, learn from, and use its capabilities. Alphabet, DeepMind's parent 
 company, is planning to use its software to determine and then release hundreds of thousands 
 of protein structures, with plans to grow this to over a hundred million. Importantly, also in July 
 2021, Baek et al. of the University of Washington released RoseTTAFold, a protein folding 
 solution that used similar approaches, adding more credence to this form of modeling.  110 

 As good as these results are, there is still more to do. Time will tell how well data driven 
 approaches generalize to predicting multiple protein complexes or the shapes that occur from 
 protein interactions. Also, they do not show the dynamic protein changes that might be seen 
 using molecular dynamics.  111  As of late 2021, AlphaFold  2 has less accuracy at the sites where 
 proteins bind with ligands. It is also unknown if data driven approaches can predict protein 
 shapes when there is no training data from evolutionarily-related, naturally occurring proteins.  112 

 Finally, while its accuracy is approaching that of laboratory techniques, it can still be improved. 

 Nonetheless, AlphaFold 2's success, as well as that of other related work, are a concrete 
 demonstration of data science’s ability to leverage decades of experimentally derived data to 
 advance biomedicine and health. The Oxford Protein Informatics Group published an 
 informative summary post with more information on this.  113 
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 We have included this example because it is a great example of a scientific application whose 
 results will be used by scientists, not the population at large. It also relies on a very 
 sophisticated collection of machine learning and other models, which have been trained on 
 decades of painstakingly collected data. Even though its generality is not fully known, this 
 protein folding solution will inspire other scientists and demonstrate that data-driven approaches 
 are now a necessity in a scientist's toolkit. 

 4.5. Healthcare Records 

 Individual patient healthcare records, including test results, diagnoses, treatments, and their 
 results, are increasingly digitized and available online. This could improve our ability to learn 
 about disease prevalence in populations, different approaches to treatment, and other ways to 
 improve human health. Vast amounts of data can be brought to bear; large healthcare 
 institutions, such as the Kaiser Permanente Health System and the United States Veterans 
 Administration, have circa 10 million enrollees. National systems have even more – the English 
 NHS has circa 58 million enrollees, whose data is made available for analytics purposes on the 
 OpenSAFELY platform.  114  An international collaboration,  the Observational Health Data Science 
 and Informatics (OHDSI), aims to make it possible to apply data from an international set of 
 federated data stores. As of 2016, OHDSI had converted over 682 million patient records to a 
 standard and comparable format. This included at least some information about an estimated 
 200 million patients.  115  Here are three illustrative  results: 

 ●  A Kaiser Permanente study used machine learning on nearly 4 million patient records to 
 train a predictive model to identify patients more at risk for developing HIV, and hence 
 more likely to benefit from taking preventative medication.  116  Kaiser, as a very large 
 integrated healthcare system, benefits greatly from its large unified data repository 
 making Kaiser’s studies easier to do than most in the US healthcare system. 

 ●  The OHDSI database supported a retrospective study comparing two different common 
 hypertension treatments across over 730,000 patients. It showed that the more highly 
 recommended treatment is associated with more side effects.  117  This study does not yet 
 prove the standard of care is wrong, but it does alert physicians to watch out for the side 
 effects. It also increases the attention on an ongoing prospective controlled trial 
 comparing the alternatives. 

 ●  During the 2020 focus on COVID-19 treatments, OHDSI’s database and tools looked at 
 two decades of records relating to the side effects of previous hydroxychloroquine and 
 azithromycin uses. While there had been considerable hope that the combination of 
 these two drugs would help treat COVID-19, the data showed troubling associations with 
 cardiovascular problems, including ones resulting in death.  118 

 More generally, big data systems with many healthcare records enable visualizations and 
 understanding of the natural history of disease and prevailing treatments. Researchers can then 
 “design experiments and inform the generalizability of experimental research.”  119 
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 Another approach to using healthcare records at scale is based on crowdsourcing. An excellent 
 use case is post-approval monitoring of new drugs to identify rare side effects that might not 
 show up in more limited pre-approval trials. As an example, the US Center for Disease Control 
 created the V-Safe system to monitor post-COVID-19 vaccination side effects, using both text 
 messaging and web technologies to increase coverage.  120  With a potential patient base about 
 four orders of magnitude larger than the populations in vaccine clinical trials, V-Safe aimed to 
 provide very rapid information on vaccine reactions and low-prevalence risks. In late summer 
 2021, V-Safe was augmented to gather highly specific side effect data from pregnant women, a 
 particularly important sub-population. 

 Within a one month period ending January 13th, 2021, 1.6 million US vaccine recipients 
 (representing 10% of the total vaccinations given in the period) completed at least one survey. 
 The rapidly available data allowed publication of both minor and serious reaction rates by 
 mid-February.  121  The survey showed a very small risk  of serious adverse reactions, though 
 about 80% of respondents reported pain at the injection site. The relatively high response rate 
 reduced the risk of selection bias (though it is still possible), but V-Safe, like all crowdsourced 
 systems, could be abused by individuals who register false adverse reactions – possibly to 
 create fear, uncertainty, and doubt. In fact, the broader US vaccine adverse event reporting 
 system has become considerably more politicized in the time of COVID-19 vaccine skepticism, 
 and its data is increasingly being used out of context.  122 

 Results such as the preceding examples hide the complexity of doing such observational 
 studies. Data needs to be sufficiently standardized, possibly across multiple sites, to be usable 
 in combination. To support data gathering and use, there must be complex data management 
 software that aggregates data while both preserving privacy and allowing for the transparency 
 needed in scientific studies. When data is gathered from multiple sites, due attention must be 
 paid to the risks of fraud. Sites are likely to anonymize or aggregate data prior to release, 
 making validation more difficult. 

 Enormous attention must be paid to modeling. Observational studies are usually done with a 
 hypothesis in mind, and there is inevitably pressure to show positive results. Even when these 
 pressures are controlled, the complexity of the statistical analyses can lead to hard-to-find 
 errors. 

 The privacy issues, particularly in systems like OHDSI which need to use cross-site data, are 
 particularly challenging. Tools and methodologies are needed to let researchers evaluate the 
 many possible correlations they identify and develop cost-effective approaches to prioritize the 
 data gathering needed to shed light on causality. However, despite the frequent desire and need 
 to do so, it is extremely difficult (and frequently impossible) to tease out matters of causality in 
 observational studies. 
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 As an example of where something went terribly wrong, well-regarded medical researchers 
 published articles in May 2020 in two of the most prestigious journals using observational data 
 from then-recent COVID-19 cases.  123  One drew conclusions  on the risks to hospitalized 
 COVID-19 patients of common blood pressure medications and the other on the risks of 
 hydroxychloroquine (uncombined with azithromycin) as a treatment. However, the underlying 
 data was not available for peer review, and the articles were eventually shown to be erroneous, 
 if not fraudulent. Both articles were quickly retracted, but real damage happened when 
 organizations briefly suspended research projects and modified patient treatment guidelines 
 based on the work. 

 Many factors make observational studies challenging, but there are huge opportunities. The 
 near-universal collection of healthcare records can suggest new hypotheses, support 
 post-approval monitoring of new drugs, provide an interactive analysis platform for researchers 
 to explore new ideas, catalyze new approaches for screening or preventing disease, and 
 sometimes answer critical healthcare questions. However, frequently, issues of data quality and 
 availability, modeling complexity, privacy and security, the difficulty in determining causal 
 relationships, and more make these applications difficult. These challenges are discussed in 
 much greater detail throughout  Part III  . 

 We’ve chosen the application of healthcare records at scale to illustrate the enormous 
 opportunities in using observational data, but also the great challenges (e.g., scale, complexity, 
 and potential for harm) to creating truthful insights and conclusions. 

 4.6. Predicting COVID-19 Mortality in the US 

 After the early reports of lockdowns and thousands of deaths in China, everyone hungered for 
 predictions about SARS-CoV-2's impact in their own regions. In addition to informing the general 
 public of expected risks, morbidity and mortality predictions could better guide institutions and 
 governments to needed actions. Even better, if models could predict the effect of policy 
 interventions (e.g., masks or levels of quarantines), they could help balance conflicting 
 economic, social, educational, and health objectives. In the United States alone, the COVID-19 
 Forecast Hub  124  hosted more than 50 different predictive  models, and there were very numerous 
 COVID-19 data science efforts elsewhere.  125 

 In many ways, mortality prediction might seem a straightforward exercise. There was publicly 
 available aggregate data: the number of COVID-19 positive tests, test positivity as a function of 
 total tests, and number of deaths. There was also a growing understanding of disease 
 transmissibility as it became clear asymptomatic people spread COVID-19 through virus-laden 
 aerosols. By the late spring 2020, there was initial data on sero-prevalence of antibodies to 
 COVID-19, which could be used to infer how many had been exposed to the disease. There 
 were measures of mobility (as discussed further in  Chapter 6  ) that showed the impact of 
 quarantine regulations, and many more potentially useful features on which to base models. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  62 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 There was also considerable modeling experience. Previous epidemiological modeling work 
 dates back to Bernoulli’s smallpox study in the 1700’s,  126  and has continued to the present. 
 There are many possible types of models ranging from 
 susceptible-exposed-infectious-recovered (SEIR) compartmental models (which are 
 interpretable and based on our understanding of disease spread) to machine learning models 
 (some simple, some using many features). Models were illustrated by excellent graphs and 
 charts available in both the scientific literature and the press. These provided exploratory and 
 explanatory insights to data scientists and epidemiologists. 

 The objective of this predictive modeling was clear, privacy issues were muted (since the data 
 used for modeling is already highly aggregated), and many people would have accepted good 
 predictions without needing an explanation. However, we do acknowledge that Cornell’s 
 COVID-19 modeling team emphasized the need for interpretability to increase the acceptance 
 of campus health policies.  127 

 However, modeling did not go smoothly for many reasons. First, data was lacking. In many 
 countries there was reasonable data on the number of hospitalizations and deaths but 
 insufficient testing to understand how many people were infected with milder cases. Changing 
 testing availability also made data hard to compare across time intervals; i.e., the number of 
 undiagnosed cases very early in the pandemic was much higher than at many other periods. 
 Mortality was measured in different ways in different jurisdictions (e.g., comorbidities led to 
 inconsistent policies for attributing death), making that data noisy. 

 Furthermore, modeling based on reported cases is innately difficult. Infected people may harbor 
 latent disease for a few days or longer before having symptoms, yet still be contagious. In fact, 
 some infected with SARS-Cov-2 never had symptoms but still spread the virus. Viruses mutate, 
 so transmissibility increased during the pandemic. 

 Popular behavior also changed greatly over time. This was due to changing perception of 
 self-risk, governmental actions, and perhaps even as a direct or indirect result of model 
 predictions on the public. 

 Finally, the available aggregated data did not match the actual subpopulations that arise due to 
 the cultural affinity, employment, education, or shared circumstances that bind people together. 
 Mortality in these subpopulations, where people differentially interact amongst themselves, can 
 greatly skew societal averages, as happened, for example, in nursing homes at the beginning of 
 the epidemic. Due to these and many other characteristics of the COVID-19 epidemic, modeling 
 was problematic. 

 In an excellent comparative review, a community of 229 co-authors wrote a retrospective 
 evaluation of twenty-two US COVID-19 mortality modeling efforts occurring from May to 
 December 2020.  128  The data on which the models were  based varied. All but one used data on 
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 prior deaths, many used data on positive cases, and some included data on hospitalizations, 
 demographics, and mobility data. A few models assumed that behavioral patterns might change 
 during the modeling period, but most did not. Some models were based on the characteristics of 
 disease spread (as in the SEIR approach mentioned previously), but most were not. 

 The paper’s methodology compared model predictions to actual data, and also compared how 
 accurate those predictions were to those made by a twenty-third model – a naive baseline 
 model with predictions based solely on past deaths. Against that baseline, about one-half of the 
 models did better and about one-half did worse. 

 Cramer et al. observed that models with simple data inputs (e.g., positive case and mortality 
 data) were some of the most accurate stand-alone models (which is vaguely depressing to this 
 book's authors). An ensemble model, which equally weighted forecasts from all the available 
 models, gave the best results for one-to-four weeks predictions, with roughly 1/3rd less error 
 using the metrics of evaluators. While this seems like a very short period of prediction, it is still 
 of value in terms of allocating treatment capacity to needy areas. 

 Longer range forecasts had lower accuracy. 4-week ahead forecasts had roughly twice the error 
 of 1-week forecasts. 8- to 20-week horizons had about 5-6 times higher errors. The longer 
 range forecasts, if better, would have been very useful in setting policies. Unfortunately, 
 according to Roni Rosenfeld at CMU (one co-author of the Cramer et al paper), “There were 4 
 major geo-temporal COVID waves in the US in 2020, and none of them was anticipated by any 
 of the forecasts I have seen (ourselves included).”  129 

 If we reflect on the relatively poor results of these modeling efforts, they happened due to 
 insufficient and erroneous data, the complexity of the necessary models, the changing nature of 
 the disease, and feedback phenomena catalyzed, in part, by government actions. Rectifying 
 these problems would be very difficult due to the logistics and privacy implications of gathering 
 very fine-grained data and predicting public policy/societal responses. Furthermore, the virus' 
 mutation may have stymied predictions in any case. 

 We concluded these six major examples with COVID-19 mortality prediction to be sure we have 
 humility, though we hold out hope that this data science application could significantly improve 
 with more data and effort. 
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 Chapter 5. The Analysis Rubric 

 This chapter defines the  Analysis Rubric  , which consists  of seven major considerations for 
 determining data science's applicability to a proposed application. While these considerations 
 may not be fully understood at a project’s inception, there needs to be a belief that answers will 
 be forthcoming prior to completion. Three of these address requirements-oriented aspects (“For 
 What or Why”) of data science applications, and three address implementation-oriented aspects 
 (“How To”). The seventh addresses legal, societal, and ethical implications (ELSI  F  ). Collectively, 8

 these considerations, or rubric elements, cover the complex trade-offs needed to achieve 
 practical, valuable, legal and ethical results. 

 Implementation-Oriented Elements 

 ●  Tractable Data  . Consider whether data of sufficient  integrity, size, quality, and 
 manageability exists or could be obtained. 

 ●  A Technical Approach  . Consider whether there is a  technical approach grounded in 
 data, such as an analysis, a model, or an interactive visualization, that can achieve the 
 desired result. 

 ●  Dependability  .  F  Dependability aggregates four considerations: Does the application 9

 meet needed privacy protections? Is its security sufficient to thwart attackers who try to 
 break it? Does it resist the abuse of malevolent users? Does it have the resilience to 
 operate correctly in the face of unforeseen circumstances or changes to the world? 

 Requirements-Oriented Elements 

 ●  Understandability  . This means the approach must enable  others to understand the 
 application. Consider whether the application needs to only provide conclusions or if it 
 will have to explain “why” it has rendered these conclusions. Will the application need to 
 detail the causal chain underlying its conclusions? Or will it make its underlying data and 
 associated models, software, and techniques transparent and provide  reproducibility  – 
 that is, the ability for analysts or scientists to understand  ,  validate, duplicate, or extend 
 the results? 

 ●  Clear Objectives  . Consider whether the application  is trying to achieve well-specified 
 objectives that align with what we truly want to happen. 

 9  We devoted much effort before settling on  dependability  to aggregate privacy, security, 
 abuse-resistance, and resilience. While dependability is often a generic term, this book will consistently 
 use it as a placeholder for these four properties. 

 8  The acronym, ELSI, stands for Ethical, Legal, & Social Implications. It was coined by James Watson in 
 October 1988 as described in “  ELSI: Origins and Early  History  .”  130  We will typically address these issues 
 in a more operationally-focused order that begins with legal issues, followed thereafter by societal and 
 ethical issues. 
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 ●  Toleration of Failures.  Consider both the possible unintended side effects if the 
 objective is not quite right and the possible damage from failing to meet objectives. Many 
 data science approaches only achieve good results probabilistically, so occasional poor 
 results must be acceptable. 

 Ethical, Legal, and Societal Implications (ELSI) Element 

 ●  Ethical, Legal, and Social Issues.  Consider the application holistically with regard to 
 legality, risk, and ethical considerations. Many of the topics under Dependability or Clear 
 Objectives topics are relevant, but this holistic analysis is broader. 

 Many applications start with a  bottom-up approach  ,  focusing on implementation-related rubric 
 elements relating to data availability, a technical approach providing the necessary results, and 
 techniques to provide needed dependability. This analysis then informs the requirements 
 definition and influences its refinement. 

 Others require a  top-down approach  , first focusing  on the requirements-oriented rubric 
 elements relating to understanding, clarity of objectives, and failure tolerance. This analysis then 
 informs the implementation approach and influences its refinement. 

 Most commonly, the bottom-up and top-down are mixed, and there is iterative flitting back and 
 forth between different considerations. No matter what design approach is used, the ethical, 
 legal, and societal implications must be considered throughout the design and analysis. They 
 cannot be bolted on at the last minute, and they must be carefully reviewed before any effort is 
 declared complete. 

 This  graphic  shows  the  seven  top-level  elements  of  the  analysis  rubric  and  the  further  breakdown 
 of Dependability, Understandability, and Ethical, Legal, and Societal Considerations. 

 Figure 5-1 Graphical Summary of Analysis Rubric 
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 The Analysis Rubric is important to this book. It is illustrated in  Figure 5-1  , which summarizes its 
 considerations in graphic. The next six sections will make the rubric more concrete by 
 demonstrating its application to the six examples of  Chapter 4  . 

 5.1. Analyzing Spelling Correction 

 Spelling correction is a clear example of a really good data science application  as evaluation  – 
 using the Analysis Rubric shows: 

 ●  Tractable Data.  Anyone can easily collect an appropriate  corpus of online text. A 
 company already running a service can easily collect user feedback from spelling 
 suggestions to verify which suggestions are good. There are “only” a few million distinct 
 word tokens in any language, so individual word count data is relatively small. However, 
 multi-word phrase data quickly grows in size–the Google Books Ngram project has a few 
 hundred gigabytes of data for counts of phrases up to 5 words long. 

 ●  A Technical Approach.  Section 4.1  outlined an approach  to spelling correction in a 
 search engine using word and phrase frequencies in the search corpus, together with 
 user feedback from accepting or rejecting suggestions. The model is relatively simple, 
 and a basic version takes just a few dozen lines of code.  131 

 ●  Dependability.  Spelling correction relies mostly on  non-private data, so privacy and 
 security are not major issues. However, privacy is always tricky, and a system that learns 
 from an individual or institution should not expose confidential information (such as the 
 spelling of code names) to outsiders. Erroneous corrections may occur, but the cost of a 
 spelling error is low. Some care must be taken to prevent an attacker from spamming the 
 spelling corrector with an incorrect spelling (perhaps to promote their brand name). 

 ●  Understandability.  Users don't really care how spelling  correctors work. Spelling 
 correctors also don’t need to understand a spelling error's root cause. Finally, a spelling 
 corrector’s internal operation can be opaque. Neither must its inner workings be 
 understandable nor must its logic and data be published. This is good, because the 
 specific words each individual user types must be kept secret. 

 ●  Clear Objectives  . The clear goal is determining and  providing the correct spelling. While 
 a spelling corrector could correct “wheg” to many different words such as “when,” 
 “where,” or “Whig,” the correct spelling is what the user  meant  to type. 

 ●  Toleration of Failures  . While a spelling corrector  should almost always do the right 
 thing, almost all users are accepting if it does not correct a word’s spelling or even 
 guesses a word incorrectly, as long as the failure is plausible. However, even a rare 
 failure that “corrected” words to become profane or otherwise objectionable would be 
 unacceptable. 
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 ●  Legal, Risk, and Ethical Issues  . Spelling correction would seem to have no legal 
 issues and minimal risks (as long as it does not inappropriately suggest taboo words). 
 Spelling would not seem to have ethical concerns, though Nicholas Carr questions 
 whether automation of mundane things is harmful to us as humans,  132  and Nick Romeo 
 questions the impact of spelling correction, per se.  133  However, Romeo observes this 
 type of concern is old, and references Plato’s Phaedrus, which poses the question of 
 whether even the written word might reduce peoples’ memories and make them 
 dependent. We think the advantages outweigh any disadvantages, and auto-correction 
 could even teach us to spell.  F 10

 5.2. Analyzing Speech Recognition 

 Speech recognition has some similarities to spelling correction, despite it being a much harder 
 technical problem: 

 ●  Tractable Data.  Speech recognition's most important  data sources are the repositories 
 pairing speech utterances (recorded waveforms) with correct transcriptions on which the 
 system can be trained. These utterances may have been professionally spoken and 
 transcribed or may have been mined from usage. While recognizing speech on behalf of 
 a user, a speech recognition application may also consult repositories relating to local 
 specialized word stores from the user’s common vocabulary (such as personal or place 
 names) and more. Just as in spelling correction, the repository may include 
 user-provided corrections, both for improving overall speech recognition accuracy and 
 better individual adaptation. 

 ●  A Technical Approach.  While data-oriented approaches  have long been applied, the 
 quality improvement brought by deep neural network recognizers made them the 
 dominant approach. These systems initially used cloud computing and specialized 
 hardware for the audio-to-text transformation step. This required complex engineering to 
 efficiently transmit waveform data from a personal device to the cloud and then to 
 receive the resulting text. That round trip requires reliable communication (particularly for 
 dictation), but now even cell phones can do many aspects of speech recognition locally, 
 thereby reducing off-device processing. 

 ●  Dependability.  When speech recognition systems collect  utterances either for 
 personalization or their overall improvement, they must take great pains to protect those 
 utterances. This is particularly difficult when the process uses human transcribers.  F 11

 Depending on the application, speech recognition will make errors, as do even the best 
 human transcriptionists. Many speech recognition systems learn from user feedback 

 11  There have been privacy concerns with speech utterances being sent to outside contractors for manual 
 transcription, so speech recognition providers have had to both increase their disclosure to users and 
 change their approach to manual transcription. 

 10  A system could even remember the “meaningful” spelling corrections it has made for us, and 
 periodically remind us of them, perhaps even teaching us with virtual flashcards. 
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 such as user-supplied corrections, which makes them more resilient and adaptable, but 
 also means they must protect against abuse in ways similar to spelling correction. 

 ●  Understandability.  As with spelling correction, speech  recognition need not be 
 concerned with explanation, transparent reproducibility, or causality. 

 ●  Clear Objectives  . Here, the objectives are a bit more  complex than spelling due the 
 need to consider differential accents, speech impediments, and multilingual speech. 
 Speech recognition systems, if to be of broad utility, must consider word accuracy across 
 an entire population. Furthermore, the objective may have occasional ambiguities, but 
 usually the right answer can be understood from context. 

 ●  Toleration of Failures  . Speech recognition’s failure  tolerance depends on the 
 application. In some cases, failures up to a certain rate are acceptable. However, in 
 some situations such as transcribing a judicial hearing, controlling a vehicle, or basing 
 emergency response off of a 911 transcription, errors could cause substantial harm 
 necessitating mitigating techniques (e.g., manual checking). Thus, failure tolerance is 
 application dependent. 

 ●  Legal, Risk, and Ethical Issues  . Speech recognition  creates minor risks except in 
 critical safety applications. There is a privacy issue if speech recordings and/or 
 transcripts are transmitted or stored. Therefore, many applications do speech 
 recognition on-device without retaining recordings. There have also been controversies 
 when humans have listened to speech utterances to do transcriptions to provide more 
 training data. Machine-learned speech recognition models tend to get more data and 
 perform better for majority populations of speakers, and may perform poorly for 
 subpopulations. Supporting these subpopulations is beneficial to all, and the balance of 
 effort to do so is a fairness issue that must be considered. 

 5.3. Analyzing Music Recommendation 

 Recommendation systems are a broader data science application than our previous two 
 examples. They have far more diverse uses, employ many more underlying techniques, and 
 while they focus on prediction, they may do many types of learning to achieve it. 

 ●  Tractable Data.  Music recommendations' underlying  data sources are quite 
 heterogeneous. Here are some example datasets that a music service would have 
 available: 

 ○  Recommendations and click data histories, indicating what was recommended 
 and what was accepted and/or listened to. 

 ○  A semantic information database about music, musicians, and musical periods. 
 This can be compiled from many sources, ranging from record label data to 
 Wikipedia. 

 ○  Metadata about the music recordings and performances. 
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 ○  The music's audio tracks. 
 There have been millions of separate CD albums.  134  Assuming about ten million albums 
 at less than one hundred megabytes per album (for say, MP3 files), we have a corpus of 
 about a petabyte of sound. As of 2021, this can be stored, albeit without redundancy, on 
 a mere one hundred hard drives! 

 ●  A Technical Approach.  As described in  Section 4.3  ,  there are many approaches to 
 creating successful recommendations, and they can be assembled into an ensemble to 
 gain their collective value. Approaches to broader recommendations vary based on the 
 specific application, but there are usually many available techniques. Often the choice is 
 governed by how they address the objectives and need for understanding. 

 ●  Dependability  . 
 ○  Systems that maintain a history of user interaction must very carefully protect it to 

 prevent security or privacy problems. This is not so easy; Arvind Narayanan and 
 Vitaly Shmatikov in the mid 2000’s showed that even highly de-identified data 
 from Netflix usage databases could divulge sensitive information.  135 

 ○  Resilience is not a great concern given that recommendations need not always 
 be accepted, though there must be guards against really terrible (or jarring) 
 recommendations that would be greatly disliked by a listener. 

 ○  Music (and almost all) recommendation systems must include anti-abuse 
 technologies, as bad actors can trick them into recommending something. Unlike 
 with spelling correction or speech recognition, music recommendation systems 
 may need to adapt to new data quickly, thereby being sensitive to 
 easier-to-mount abuse attacks. This is a very considerable challenge for 
 recommendation systems, and abuse-resistance may significantly impact what 
 technical approaches are feasible. 

 ●  Understandability  . 
 ○  A system may be required to explain why it has made certain recommendations 

 to fulfill regulatory, or even contractual/audit, requirements. Even if there are no 
 such requirements, users may still like knowing why a system thought they would 
 like something, and might find that information educational. A system's 
 implementers may also want to know this to help debug these complex systems, 
 which gets harder to do as they combine more and more signals and 
 approaches. When recommendations are based on an ensemble of algorithms 
 operating on data from a huge user population, it may be hard to ferret out the 
 relative contribution of any component. This is especially true if the system uses 
 hard to interpret neural networks. 

 ○  With respect to causality, why a user likes a recommendation is a truly complex 
 matter. The ultimate cause may rest in neuroscience and be well beyond the 
 capability of any system and its available data. 

 ○  There is no reason for a music recommendation system to release its underlying 
 data and models to others. There is no scientific result that others need to 
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 duplicate, though regulatory frameworks might require such release for other 
 recommendations, e.g., in the realm of investment management. The Netflix data 
 release mentioned under Dependability is a cautionary lesson. 

 ●  Clear Objectives  . The system's objective is to recommend  tracks a user then plays. 
 However, there are shades of gray that make implementing a recommendation system 
 very tricky indeed: 

 ○  Should it try to diversify a user’s listening repertoire and perhaps educate the 
 listener? 

 ○  Should it consider material's royalty costs? Notably, if there were a differential 
 cost of material as in movies or books, subscription services might penalize 
 recommendations with high licensing costs, while a la carte services might 
 recommend expensive items to make an increased profit. 

 ○  Is a high proportion of accepted recommendations a good enough surrogate for 
 listener satisfaction? Or could listeners–over time–become fatigued and 
 inattentive to the system, even though they have actively or passively accepted 
 its recommendations? 

 ○  How much should a music recommendation system “throttle” itself? Some say 
 good recommendation systems distract society from more important pursuits by 
 enticing people to instead listen to yet more music. Other recommendation 
 systems have similar concerns, perhaps enticing someone to read yet another 
 novel or watch another cute cat video, or perhaps (more seriously) reinforcing an 
 erroneous “fact.” 

 ○  These and many more secondary considerations make music recommendations 
 quite challenging, and  Chapter 12  discusses these  objective setting challenges in 
 much more detail. 

 ●  Toleration of Failures  . Music recommendations need  not be “perfect,” and a user may 
 not heed a particular recommendation for many reasons. It probably is not even a goal 
 that every recommendation be accepted, as users may appreciate bold or creative 
 suggestions. However, recommendation systems need to walk the fine line between bold 
 and jarring recommendations. 

 ●  Legal, Risk, and Ethical Issues  . Music recommendation  has few legal issues and 
 fewer risks than other domains (although, for example, it is crucial to be careful about 
 recommending obscene lyrics to minors). However, there are many ethical issues 
 relating to the type of recommendations made and their impact on individual listeners, 
 their community, and the creator/artist whose success may be at the mercy of these 
 algorithms. The fourth item under Clear Objectives, could easily be considered also an 
 ethical consideration due to its need to balance rights and harms. 
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 5.4. Analyzing Protein Folding 

 Protein folding does not provide direct consumer benefits, but rather intermediate results that 
 scientists use to make other discoveries. This makes some rubric elements easier to satisfy 
 (e.g., no abuse), but increases others' importance (e.g., reproducibility). 

 ●  Tractable Data  . Data-driven approaches to protein  folding build on many databases, for 
 example, UniProt, which contains sequence data about millions of proteins, and the 
 Protein Data Bank, which contains a global archive of experimentally determined 3D 
 protein structures.  136  Alphafold 2 requires many hundreds  of gigabytes of such data as 
 inputs. The extent to which the models can use raw, unprocessed data from these 
 databases versus needing pre-processing (as in  Section 8.2  ) varies depending on the 
 details of their technical approach. 

 ●  A Technical Approach  . In contrast to the spelling  example, which has very simple 
 models, the recently successful protein folding prediction uses some hard-coded 
 techniques (e.g., for aligning related amino acid sequences) and several connected 
 machine learning models (e.g., transformers  137  ), which  have only recently become 
 understood. The technical approach also blends in physical constraints such as the 
 triangle inequality and energy minimization. 

 ●  Dependability  . There are few privacy, security, or  resistance to abuse concerns for this 
 application, although organizations may want to maintain confidentiality. Resilience is 
 important, as scientists would prefer the highest quality results independent of the 
 precise protein being predicted or occasional input data errors. 

 ●  Understandability  . Causality and explanation are not  critical as scientists already 
 understand much of the underlying physics. Also, good structure predictions are more 
 important than the explanation of how they were achieved. On the other hand, 
 reproducibility is important for two reasons. First, others should be able to build on and 
 improve the work. Second, scientists need to compare different protein folding prediction 
 systems to learn their strengths and weaknesses. Even a cursory examination of the 
 release packages of both AlphaFold 2 and RoseTTAFold shows the enormous amount 
 of work data scientists must do so others can reproduce their results. 

 ●  Clear Objectives.  Protein folding's objectives are  generally clear: accurately predict the 
 correct structure. There is some leeway in how to handle near misses. 

 ●  Toleration of Failures  . Errors in protein structure  can be tolerated if scientists know 
 their likelihood and can estimate the costs of the extra work they cause. To minimize 
 risk, scientists can often do experimental work to confirm predictions. Reproducibility 
 allows others to find failures before they become more problematic and suggest fixes. 
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 ●  Legal, Risk, and Ethical Issues  . ELSI issues related to protein folding are minimal, 
 though applying that knowledge (e.g., in diagnosing or treating disease) will result in 
 many challenges. 

 5.5. Analyzing Healthcare Records 

 As we discussed in  Section 4.5  , there are immense  opportunities to improve human health, but 
 also many complexities. Applying the Analysis Rubric makes this clear. 

 ●  Tractable Data  . A vast amount of health-care record  data is kept at medical institutions, 
 testing facilities, insurance companies, and other locations. However, the data is 
 fragmentary, encoded in different ways, and recorded with differing degrees of accuracy. 
 The data must be carefully guarded, due to both data privacy reasons and economic 
 value. As an example of the complexity, a dictionary of different histologic test results 
 alone fills a 385 page document, and it represents a very small portion of the needed 
 data definitions and standards!  138 

 ●  A Technical Approach  . As healthcare records can be  used in many different problem 
 domains, technical approaches vary greatly. They center, however, on sophisticated 
 methods informed by critical thinking.  139  There are  established best practices, sometimes 
 implemented in standard libraries to reduce the effort in undertaking new research 
 applications. 

 ●  Dependability  . Privacy and security are of foremost  concern, due both to ethical needs 
 and legal protections of human healthcare data. As a result, institutions must control 
 their own data carefully and not release it to others without careful safeguards, such as 
 aggregation and anonymization (see more on the latter in  Chapter 10  on Dependability). 
 Abuse is not likely, but resilience is very important because errors, even if eventually 
 uncovered by further experimentation, could be very costly. 

 ●  Understandability  . The specific application determines  what understanding needs to be 
 provided. If the objective is prediction, as in the HIV-risk example, explanation may be 
 needed. When retrospective, observational studies are used to learn correlations that 
 would catalyze further study in clinical settings, there is a particular need to expose 
 underlying assumptions and perhaps allow reproducibility (see  Section 11.3  ). However, 
 scientific reproducibility is complicated by the complex coding of data and privacy-related 
 limitations on data dissemination. While it is very difficult to show causality from 
 retrospective studies, many will want to use them to make healthcare decisions because 
 no better information may be available. For example, by September 2021, the World 
 Health Organization reported over 150 retrospective observational studies on COVID-19 
 vaccine effectiveness, and despite limitations, their data was indeed used to inform 
 vaccination policy.  140  (See  Section 11.2  for more  on causality.) 
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 ●  Clear Objectives.  These applications usually have clear objectives, although in the 
 realm of prediction, balancing the likelihood of false positives and false negatives, and 
 setting related thresholds may be difficult. Study design objectives may be open-ended 
 when the goal is creating an interactive analysis platform for gaining insight, though 
 there are statistical risks to this as discussed in  Section 11.4.2  . 

 ●  Toleration of Failures  . For healthcare records, failure  toleration varies. While many 
 observational studies are used to create and hone hypotheses, it is quite important that 
 the hypotheses are of sufficient value to warrant the cost of the ensuing and necessary 
 confirmatory research. 

 ●  Legal, Risk, and Ethical Issues  . Health-related data  is significantly regulated, as are 
 study designs involving patient health records. The objectives must take account of 
 compliance with these regulations. There can be great financial and reputational (not to 
 mention safety) risks if data is lost or misused. Ethical issues frequently arise and are 
 best illustrated with questions: Are different elements of society served equitably? If an 
 observational study shows a potential risk to a patient or a population, should that risk be 
 made known even if there is a lack of corroboratory evidence or uncertain potential 
 harm? Should a study, of potentially great value, be undertaken knowing its 
 reproducibility might be in doubt? We present more about these ethical issues 
 throughout  Part III  . 

 5.6. Analyzing Predicting COVID-19 Mortality 

 We will be briefer in this sixth application of the Analysis Rubric, yet still attempt to provide 
 additional color on this important, yet difficult, COVID-19 mortality prediction application. 

 ●  Tractable Data  . Data, particularly early in the COVID-19  pandemic, was late in arriving. 
 It was inconsistent across time periods and populations, occasionally erroneous, and 
 very incomplete. COVID-19 modeling certainly did not have location, diagnosis, or health 
 data on individuals or even small sub-populations. Much greater detail (e.g., universal 
 GPS/Bluetooth location tracking and reporting) might have greatly improved modeling 
 capabilities, but would have had unacceptable privacy implications in many societies. 
 Compare and contrast data availability for this application with recommendation 
 systems, which have vast amounts of personal, highly detailed click data to make 
 individual recommendations. 

 ●  A Technical Approach  . There was no shortage of technical  approaches, ranging from 
 SEIR models based on disease transmission dynamics to auto-regressive 
 machine-learned ones. Some worked well for near-term modeling (e.g., for a period of 
 weeks), but none worked well for longer-term modeling. As suggested above, vastly 
 more data would have made this a very different, and likely more tractable, modeling 
 problem. 
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 ●  Dependability  . Privacy and security were not concerns for modelers, but these issues 
 are at the heart of why detailed data was not collected on individuals or sub-groups. 
 Abuse wasn’t a problem, mostly because there was no crowd-sourced data. Models 
 were reasonably resilient for near-term projections, but not long-term. 

 ●  Understandability  . Some models were based on disease  transmission dynamics. 
 These were explainable and naturally suggested causal relationships. Others were not. 
 To the extent that models would be used to make important public policy decisions, 
 explanation was crucial. The researchers who created the models referenced in the 
 aforementioned Cramer et al. paper provided for scientific reproducibility. 

 ●  Clear Objectives.  The primary objectives were clear;  First and foremost, this is to 
 predict the mortality rate from COVID-19, though there is some definitional ambiguity in 
 classifying the cause of death. Secondarily, it would have been excellent if models could 
 have predicted what would happen under different policy assumptions, such as the 
 impact of school openings. While Cramer et al. did not explicitly evaluate model 
 performance for these goals, they are even harder predictions to make, and it is unlikely 
 the models could shed much light on them. 

 ●  Toleration of Failures  . Failures are problematic as  they would be expected to have very 
 significant effects on human behavior. 

 ●  Legal, Risk, and Ethical Issues  . There are few, if  any, legal issues. The risks of poor 
 forecasts are probably not financial, but ethical in nature due to their very serious 
 impacts on health and welfare. 

 5.7. The Analysis Rubric in Summary 

 This chapter illustrated the breadth of considerations for effectively applying data science to a 
 problem: 

 ●  Tractable data  and a  technical approach  are necessary.  Implementations must also 
 include a significant focus on  dependability (privacy,  security,  resistance to  abuse, 
 and resilience)  . These latter issues may be even more  complex than what some might 
 consider the “core” data science. 

 ●  Data science applications that must provide  understanding  (for  explanation  , 
 determination of  causality  , or release of data and  algorithms to enable  reproducibility) 
 have added implementation complexity. Many data science techniques do not easily 
 support such objectives. 

 ●  While in many cases a data science application's  objectives  may seem clear, when 
 considered in depth, they are hard to pin down, especially given possible unintended 
 consequences. Recall the term,  objective function  ,  from operations research. Can we 
 develop objectives with the precision connoted by this term? 
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 ●  Data science techniques frequently work only probabilistically. If an application cannot 
 tolerate failures  , the challenges may prove insurmountable. 

 ●  Finally, data science applications can cause substantial problems, especially if 
 incorrectly specified or implemented. The rubric element covering  legal, societal, and 
 ethical issues  must be very carefully weighed. 
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 Chapter 6. Applying the Analysis Rubric 

 In this chapter, we pivot towards taking the view of a team building new data science 
 applications. Their work begins when someone creates a concept for a worthwhile and plausibly 
 achievable technique, product, or service. Goals may range from scientific pursuit to commercial 
 gain. They may be motivated by the need to solve an existing problem or by a novel way of 
 extracting information out of an existing data source. 

 Following conceptualization, the design process typically continues with further analysis and 
 refinement of the initial idea, often with its decomposition into more solvable subcomponents. All 
 of this has the ultimate goal of creating an implementation that delivers value. As we mentioned 
 in the beginning of  Chapter 5  , most design approaches  mix bottom-up and top-down thinking. 
 There are many methodologies for designing new products, services (or even experiments), but 
 they are a topic for a separate book. We recommend the classic  The Design of Everyday Things 
 by Don Norman  141  who we mentioned earlier as founder  of the field of visualization. He can also 
 be credited with moving computer science towards the empirical approaches that truly made 
 computers much easier to use. 

 Whatever design approach is chosen, teams can realize value from the initial concept by 
 applying the Analysis Rubric to ensure sufficient attention is paid getting the data science right. 
 We now illustrate its use in twenty-six applications in six different domains, as listed in  Table 6.1 
 through  Table 6.6  . More naturally solvable problems  are towards the top of each table, and 
 more difficult ones towards the bottom. 

 In the tables: 
 ●  A ✓ does not indicate that the rubric is  easily  met,  just that there is a path towards 

 satisfying it. For example, web search has working technical solutions, but implementing 
 them requires enormous creativity and labor. (We admit to there being considerable 
 nuance in our assignments of ✓s, so there is room for disagreement.) 

 ●  A table element's few words cannot fully address an application's difficulties in meeting a 
 rubric element. 

 Some applications have considerable prose explanations, but in the grand tradition of “The 
 Proof is Left to the Reader,” some descriptions are sparse. The more cursory ones, however, 
 provide a greater opportunity to think through how we filled in the table rows with ✓s and other 
 annotations. 

 6.1 Transport and Mapping Applications 

 Traffic speed estimation  (  Table 6.1  ) is a relatively  straightforward data science application of 
 great interest to drivers. Starting with implementation-oriented rubrics, data comes from cell 
 phones that know their own location and are networked to data-processing cloud-based servers. 
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 The technical approach is based on a system knowing a cell phone’s location at the beginning 
 and end of some time interval. With that information, the system can compute the average 
 speed by dividing the distance between those locations by the length of the interval. If captured 
 from enough cell phones, the average data accurately reflects the speed of traffic on a stretch of 
 road. 

 Privacy and security risks are minimal since this application need not use any identifiable cell 
 phone or owner data. Anything identifiable is extraneous and can be discarded. The 
 implementation resists abuse because spoofing requires physically manipulating many cell 
 phones' locations. However, even this application did prove hackable when a Berlin artist put 99 
 cell phones in a slow moving wagon in February 2020 and generated fake traffic jams on 
 Google Maps.  142  This undoubtedly reminded the product  team to protect against very close 
 proximity, nearly identical location signals. Finally, the algorithm is extremely simple and 
 functional, although it cannot differentiate between a road nobody happens to be driving on and 
 a closed road. This is a  corner condition  , and most  computer applications have them. To deal 
 with this, the system designers could add additional data such as road-closing data from 
 municipal or state web sites or simply not report traffic speed on roads with insufficient data . 

 The application is also straightforward in the sense that it has no real need to provide 
 explanation, show causal relationships, or provide reproducible data to others. Failures are 
 tolerable, because the estimates are so much better than nothing. Also, drivers are aware of the 
 likely limitations, since traffic can unpredictably and rapidly change due to an accident, 
 inclement weather, or some unusual event. 

 The objectives are reasonably clear, but there are nuances to consider. Should the system show 
 the current traffic speed, or should it show the traffic at a predicted arrival time? Should it show 
 traffic speed relative to a road’s speed limit (green might mean traveling at the speed limit) or 
 perhaps versus the expected traffic speed (green is pretty good for rush hour)? These are 
 relatively minor differences, but such details need precise definition, the data needed for 
 implementation must be available, and the comparisons must be added to the software. 

 As for the ELSI Review, there seem to be few problems. However, some might be concerned 
 that providing traffic speed estimates tends to make driving easier, consequently reducing the 
 appeal of mass transit. There is potentially some significant risk if the application fails 
 completely, particularly as the driving population becomes more dependent on it. 

 Overall, this application seems quite straightforward and it is labeled with mostly  ✓  s  in the table  . 

 Route finding  is a related problem, listed to illustrate  its much greater technical complexity and 
 the unexpected complexity of objectives. 

 Addressing the approach first, a classic operations research method would model roads as a 
 network and algorithmically computes a shortest path based on predefined parameters such as 
 speed limits and distances. A data-driven approach might only look at what others have done 
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 and use their successful paths (that is, paths that take the least amount of time or fuel for a 
 given start and end point). Actual approaches combine analytical techniques from the 
 operations research’s graph models with dynamically changing vehicle experience data. 

 There are many possible enhancements a design team can consider in this combined 
 approach. With real-time data, how should the model (or routing algorithm) adapt when a traffic 
 accident occurs? Should a model be calibrated with historical delay data as of when a route was 
 requested or at a vehicle’s predicted arrival time in a particular area? Should the directions 
 account for feedback, that is, the impact on future traffic of current drivers following new traffic 
 directions? How can a direction finding system include creative driver paths taken from the 
 history of travel–combining these driver-found solutions with those proposed by a model? Route 
 finding systems are increasingly using these hybrid approaches. 

 While an  obvious  goal is to minimize delays, property  owners on quiet side streets might not 
 want them used as overflow capacity for major highways. While not addressing this particular 
 issue, Google (in the Spring of 2021) added new possible objectives to its navigation system so 
 users can prioritize safer or more fuel-efficient routes. 

 There is also the question of priority. Is a system first-come, first-served, or should buses, 
 trucks, multiple-occupant or lower emissions vehicles, or even higher paying vehicles have 
 priority? 

 From a failure perspective, small errors are fine, but it is not fine to direct a vehicle onto a 
 one-way road against traffic or to send a vehicle onto a road that is closed. Furthermore, the 
 complete breakdown of vehicle routing systems is growing problematic as drivers become 
 increasingly dependent on them. Breakdowns could occur due to application failures, cloud 
 infrastructure failures, attacks on the GPS system, etc., though there is enormous redundancy 
 built into each component. 

 Table 6.1 Transport & Mapping Applications of Data Science 
 Transport & 
 mapping 
 applications 

 Tractable 
 data 

 Feasible 
 technical 
 approach 

 Depend- 
 ability 

 Under- 
 standability 

 Clear 
 objectives 

 Toleration of 
 failures  ELSI 

 Traffic speed  ✓  ✓  Feasible, 
 but risks 

 ✓  Subtle 
 challenges 

 Individual but 
 not system- 
 wide 

 ✓ 

 Route finding  ✓  ✓  Feasible, 
 but risks 

 ✓  Nuances & 
 potential 
 externalities 

 No egregious 
 errors & not 
 system-wide 

 A few 
 ELSI 
 issues 

 Level-5 
 (fully-autonomous) 
 cars 

 ✓  Feasibility 
 unproven 

 Resilience 
 challenge 

 Explanation 
 likely needed 

 Difficult 
 challenges 

 Great safety 
 required 

 All difficult 
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 Level-5 (fully autonomous) cars  are a complex application  that incorporates many data 
 science components built from many kinds of datasets and technical approaches. 

 Self-driving cars need to process and act on many forms of data representing road networks, 
 lanes, interchanges, danger areas, traffic bottlenecks, etc. Bespoke sensing activities (such as 
 Google or Bing street mapping cars) and car-mounted sensors can provide much of what is 
 needed. Important data can also be gained from the many vehicles that have accurate location 
 data. As we have observed, vehicular location data is extremely useful in showing traffic speed, 
 but geotraces can be of even greater use for training autonomous driving models. 

 Self-driving cars can clearly incorporate machine learning techniques, which have proven very 
 successful in object recognition. Examples include detecting curbs, stop signs, bicycles, or 
 turning vehicles. Autonomous vehicles also need to learn how human drivers react to the sight 
 of such objects and many other driving situations. 

 This application has significant dependability requirements. While privacy issues are not 
 particularly different from other applications that know user location, there are significant 
 security issues. If bad actors gain control, individually or collectively, cars (which some liken to 
 two-ton projectiles) can do great damage. Some people might even try to bait (or, perhaps, 
 abuse) a self-driving car into behaving improperly. Algorithms must be resilient in the face of 
 many unanticipated conditions. They must respond appropriately to human drivers and their 
 often iffy driving habits. 

 The objectives are difficult to get right. As two examples, consider first balancing arrival time vs. 
 risk tolerance, then determining right of way in complex situations. Autonomous vehicles may 
 need to provide explanations for their actions, especially if they get in an accident with property 
 loss or injury. In particular, they may need to justify their action as the best possible under the 
 circumstances. While no systems (humans) are perfect, self-driving cars are very intolerant of 
 failure. Many errors have extreme legal, ethical, and financial risks. 

 We don't know if present approaches are sufficient to allow for Level 5 Automation  143  (fully 
 attention-free self-driving cars in all conditions). However, they almost certainly will allow 
 autonomous cars to operate under specific conditions (Level 4) with better safety than cars with 
 human drivers. However this plays out, data science-based techniques will continue to make 
 driving safer for all. 

 6.2 Web & Entertainment Applications of Data Science 

 There are many data science applications on the web, in part because they are so natural given 
 the large bodies of data stored and accumulated from users. Because of our familiarity with 
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 them and the previous web-related applications of spelling correction, speech recognition, and 
 recommendation engines, our explanations of the  Table  6.2  examples are more succinct. In 
 particular, news and video recommendations are similar to music recommendations, although 
 they have more profound ELSI considerations. 

 Identifying copyrighted material  became important  when video sharing on the web became 
 prevalent in the 2000’s. If sites could do this, they could then offer copyright holders the 
 opportunity to take down or perhaps monetize their videos. When Google purchased YouTube, it 
 quickly confronted the copyright problem and developed ContentID, a matching system. It uses 
 machine learning to match uploaded content to previously registered (and provided) copyrighted 
 material. A match triggers a notification to the copyright holder and makes the alleged infringer 
 ineligible to receive advertising revenue. The objective is clear: to reduce copyright 
 infringement. 

 Abuse is the biggest implementation challenge, as copyright infringers can attempt to 
 camouflage material or bad actors can claim copyright they don't possess. To deal with abuse, 
 YouTube has a dispute resolution system with human oversight. As a truly unanticipated result 
 of ContentID, police officers sometimes play copyrighted music to prevent recordings by 
 bystanders during confrontations from being posted to YouTube.  144  The inclusion of that music 
 makes it very likely that copyright holders will ask the video be removed. 

 Otherwise, implementation is straightforward. The application is reasonably tolerant of failure, 
 as uploaders or copyright owners can dispute the automated system’s answers and request 
 human arbiters make the final decision. The system appears to be in conformance with legal 
 structures and has few ethical concerns. 

 In-session video game personalization  can utilize  game and player data to make video 
 games more compelling, and perhaps more addictive as well. This is most feasible with games 
 that have probabilistically occurring events (a certain card being dealt) or when the computer is 
 a player. The data and technical approaches exist. However, there are dependability (in 
 particular, abuse) challenges, hard-to-define objectives, and ELSI issues, e.g., relating to how 
 addictive a game should be. There will be more on this, particularly in  Chapter 12  . 

 Targeted, or personalized ads  is one of data science's  most prevalent web applications. 
 Targeted ads may be shown when someone searches the web, shops online, or views 
 entertainment or news sites. This application has some commonality with recommendation 
 systems as its goal is to place (or recommend) an ad that meets some goals. Ads have been a 
 primary revenue source for many internet companies, which try to make  personalized ads 
 beneficial to these four different constituencies, which are also illustrated in  Figure 6.1  . 

 ●  The  consumer  viewing the ad, who wants to see pleasing,  relevant, and useful ads. 
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 ●  The  publisher  , such as a periodical, a video site, or a blogger, who receives revenue for 
 providing ad space and viewership. They want ads that maximize revenue but don't 
 detract from their site's value. 

 ●  The  advertisers  who place ads to enhance their image  or to sell products. An advertiser 
 often desires a particular target audience so it can customize its ads, making them more 
 effective. 

 ●  The  advertising platform  that coordinates the matching:  the “right” ad for the “right” 
 user on the “right” site in the “right” context. The advertising system makes a 
 commission based on the value of the ads placed or clicked-on, how many people see 
 or click on an ad, or perhaps even how much they buy. In some instances, such as 
 search and social networking advertising, the ad placement system and the publisher 
 may be the same. 

 Advertisers  bid  to  have  their  ads  inserted  into  publishers’  web  pages;  an  ad 
 placement platform chooses the best ads to be shown to each consumer. 

 Figure 6.1 Parties of an Advertising System 

 Vast amounts of data are available for ads personalization, with its type depending on the 
 particular situation. Data may include geographical location, recently viewed websites, 
 purchases, and (in the case of closed systems such as Search Engines or Facebook) detailed 
 information on interests or searches. Advertisers have data that powers systems that provide 
 automated recommendations on advertising budgets, keyword selection, and ad placement. 
 Recently, there has been considerable evolution in how to gather data, due to public and 
 regulatory concerns, and it seems likely that the role of Web Cookies will decline. 

 There are many technical approaches for generating a recommended ad from that data, often 
 based on machine learning based using deep neural networks. Requirements must inform the 
 technical approach, because users, advertisers, and publishers will tolerate only some 
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 mistargeted advertisements. 

 The engineering complexity of a personalized ad system is very high. Once appropriate ads 
 have been identified, online auctions direct ads to the buyers who find the space most valuable. 
 For any given query or page view, the potential ads must be identified and the auctions run so 
 quickly that the user does not notice any delay in page load. Advertising systems may need to 
 handle thousands of queries per second 

 Perhaps targeted advertisements' greatest implementation challenge relates to dependability 
 concerns. In part, this is due to the significant privacy and security issues when vast amounts of 
 personal data are applied to a problem. As further discussed in  Section 10.1  , not only does the 
 data need to be protected from disclosure, it cannot be used in ways a user would feel are 
 spooky. However, increased privacy protections could also decrease competition, as discussed 
 in  Section 10.1.5  . In addition to privacy issues,  the vast amounts of money associated with 
 advertising systems invite financial and other forms of abuse. 

 Turning to the requirements rubrics, advertising can be opaque, with little need for explanation. 
 But, there is the complex question of how to balance the needs of the consumer, publisher, 
 advertiser, and advertising system. For example, should near-term site revenue or long-term 
 customer satisfaction be optimized? How is revenue allocated between the publisher of the site 
 showing the ad and the system brokering the advertisements? 

 Ethical, legal, and societal considerations also come into play in setting objectives, for example: 

 ●  If the objective were solely to maximize clicks on an ad (in the near term), deceitful ads 
 that practiced “bait and switch” would be truly overwhelming. 

 ●  If the objective were only to sell a product or maximize economic activity, there would be 
 no limits on advertising. But protecting consumers is also a concern: advertising of 
 medicines is carefully controlled, and much of the world has banned cigarette ads, 
 optimizing health over economic activity. 

 ●  To reduce foreign influence on political systems, there may be laws that restrict political 
 ads paid for by foreign entities. 

 ●  Even more generally, some argue that ads elicit consumer behavior not in consumers’ 
 true self-interest. Ads encourage consumers to overindulge in alcohol, tobacco, and 
 unhealthy food, or to spend beyond their means. Nobel Prize-winning economists 
 Akerlof and Shiller in their book,  Phishing for  Phools  ,  suggest regulation.  145 

 ●  Advertising payments may support the creation and display of harmful content, or the 
 ads themselves may be harmful even if not illegal. 

 ●  There are financial risks if the ads are not seen by actual potential customers due to 
 insufficient system-wide abuse prevention. 

 Chapter 12  addresses the challenges in setting objectives,  and  Part III  , in aggregate, addresses 
 many other challenges. Despite them all, data science-driven advertising has been a very 
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 powerful addition to commerce and benefited the public by paying for much of the growth of 
 highly popular and useful web services . 

 Table 6.2 Web & Entertainment Applications of Data Science 

 Web & entertainment 
 applications 

 Tractable 
 data 

 Feasible 
 technical 
 approach 

 Depend- 
 ability 

 Under- 
 standability 

 Clear 
 objectives 

 Toleration 
 of failures  ELSI 

 Identifying  copyrighted 
 videos 

 ✓  ✓ but not 
 foolproof 

 Abuse  ✓  ✓  ✓  ✓ 

 In-session video game 
 personalization 

 ✓  ✓  Abuse  ✓  Balance 
 tricky 

 ✓  Ethics, 
 financial 

 Targeted, or 
 personalized, ads 

 ✓  ✓  Privacy, 
 security, 
 abuse 

 ✓  difficult  ✓  Legal, 
 risk, 
 ethics 

 Video 
 recommendations 

 ✓  ✓  ✓  ✓  ambiguity  ✓  Complex 

 Web search  ✓ but 
 voluminous 

 ✓ but very 
 many 
 techniques 

 Privacy, 
 security, 
 abuse 

 ✓  Significant 
 nuance 

 Certain 
 failures 
 serious 

 Legal, 
 risk, 
 ethics 

 News feed 
 recommendations 

 Fake news  Diverse 
 challenges 

 Resilience, 
 abuse 

 Increasingly 
 important 

 Significant 
 nuance 

 Certain 
 failures 
 serious 

 Legal, 
 risk, 
 ethics 

 Web search  makes the web's vast agglomeration of data  easily accessible to users. We expect 
 search to  locate  websites possessing desired information,  to  navigate  to a specific website, to 
 return  an answer, or perhaps even to  perform  a transaction,  such as finding a route from city  A 
 to city  B  .  146  Web Search engines are critically important  because they are a frequent gateway to 
 the Web. 

 Web search, like music recommendation, relies on three broad sources of data: 
 ●  Content  : the words on a page and the concepts behind  them. 
 ●  Metadata  : facts about the page, the reputation of  the website hosting the page, and 

 facts about the links to this page. 
 ●  User reactions  : popularity of a page in general, or  as an answer to a specific query. 

 Abuse is a significant problem. All webmasters want their websites to be ranked highly, and 
 some achieve high rankings by providing quality content. But some “web spammers” try to 
 abuse the system by creating fake web links and manipulating the system in other ways. Search 
 engines need to stay on top of each new type of manipulation and reward good content, not 
 manipulation. Some complex issues arise in setting objectives: 
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 ●  Search objectives may be subjective and conflicting; designers need to consider how to 
 arrive at answers for political queries and what balance of results should be presented? 
 Should the website's response speed influence the ranking? Should a search engine try 
 to return search results from multiple sites? Should search engines provide answers 
 when they can, or restrict themselves to returning page links? 

 ●  Many ethical questions that impact the objectives also arise, such as: What focus should 
 there be on the source's likely veracity? Should the searcher's pre-existing views be 
 taken into account? 

 Failure tolerance is complex. When search engines return links to web pages, the searcher 
 knows that some links will be excellent, but others may not be. Thus, search engines are 
 tolerant of some forms of failures. For example, most users will understand if the query 
 “cataract,” returns information on eye diseases rather than waterfalls, and refine their search 
 accordingly. However, users may not tolerate other types of errors. For example, a search 
 engine’s reputation would decline greatly if even a small percentage of its results were truly 
 atrocious. 

 For example, in 2004 a Google search on “miserable failure” returned “George Bush” due to 
 Google’s then-inability to prevent a kind of abuse, termed a “Google Bomb.” For this reason, 
 many search engines use algorithms, tuned with considerable human labor, to prevent very 
 poor results. This reminds us that data science approaches should consider rare downsides and 
 mitigate the effect of bad actors. 

 Video recommendations  and  news feed recommendations  are important data science 
 applications that share some characteristics with music recommendations as described in 
 Section 4.3  and  Section 5.3  . Both build off of similar  techniques, but there are two key 
 differences: 

 ●  The scope of their corpora varies. As presented, music recommendations focused on a 
 relatively constrained corpus as defined by the music publishing industry. However, 
 video and news feed recommendation applications have far larger and more irregular 
 corpora, particularly if there is user-supplied content. Publishers are highly motivated to 
 have their content viewed, and they sometimes go to extreme lengths to game 
 recommendation systems. 

 ●  The individual and societal impact of video and news content is far greater. While all 
 content creators want their content to be seen, many who post video or news stories 
 have significant political goals and go to considerable efforts to achieve them. 
 Recommendation engines have their own complex goals (e.g., perhaps to moderate 
 content or suppress fake news) that are both challenging to define and meet. 

 Because of these two differences, all of the rubric elements are more complex to satisfy. We will 
 discuss these applications’ many challenges in  Part  III  and summarize some ethical issues 
 relating to news recommendations in  Chapter 7  . 
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 6.3 Medicine and Public Health Applications of Data Science 

 Table 6.3  lists several such health applications,  supplementing the two presented in  Chapter 4 
 and  Chapter 5  . We will discuss three briefly, but  devote more attention to disease diagnosis, 
 genome-wide association studies (GWAS), and understanding the cause of a disease. 

 Mobility reporting  was introduced by Google in 2020  during the early COVID-19 quarantines 
 and used individuals’ location data to chart regional movement trends over time. Its reports were 
 broken down not only by region but also by categories such as retail and recreation, groceries 
 and pharmacies, parks, transit stations, workplaces, and residences.  147  Google engineers felt 
 these reports would show society’s acceptance of government recommendations, and perhaps 
 catalyze safer behaviors or better governmental responses.  148  These were referenced by over 
 2,000 scholarly papers as of September 2021. 

 The application uses similar data to the traffic speed application of  Section 6.1  , though mobility 
 reporting needs to solve much harder privacy issues. After all, its objective is to report on travel 
 patterns, but to do so without divulging anything that could be used to infer private information 
 about any individual or to exacerbate societal divides. 

 In addition to Google, other organizations introduced tools that showed changes in mobility. 
 Apple introduced a tool based on counting the number of requests made to Apple Maps for 
 directions, stratified by mode of transportation. Facebook provided mobility data based on the 
 number of geographic tiles an individual moved to, relative to a baseline. Other datasets were 
 also used as a proxy for mobility.  149 

 Vaccine distribution optimization  involves balancing  a truly wide variety of competing 
 objectives against the likely operational success of achieving rapid vaccine uptake. Objectives 
 might include minimizing mortality, supporting childhood education or economic activity, 
 ensuring caregivers stay safe and willing to work, demonstrating fairness across multiple 
 subgroups, being politically expedient, and many more. 

 Models must take into account the likelihood of supply or distribution constraints (e.g., 
 refrigeration), the predilection of subpopulations to accept vaccines, the likelihood that vaccines 
 prevent disease transmission, and even the effects of influencers – who might not themselves 
 be a priority but might positively influence others. There are many papers evaluating different 
 strategies, for example, this one by Bubar et al.  150  Modeling approaches for reducing vaccine 
 hesitancy would seem to be particularly difficult. 

 Identifying Disease Outbreaks  using crowd-sourced  data has potential value. However, we 
 defer this discussion to  Section 11.3  on Reproducibility  Challenges, to allow us to focus on the 
 problems created by this application’s opaque nature. 
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 Disease Diagnosis  represents an opportunity to use large scale training data and machine 
 learning to provide new diagnostics. While there have been specific tests for diseases since at 
 least the late 1800’s when Gram staining started using stains to classify bacteria, it is ever more 
 possible to create new classifiers using neural networks on new forms of sensor data. Data 
 diagnostic tests of many varieties, including X-rays, MRIs, and multispectral cameras, can then 
 be classified to do or aid diagnoses.  151  In fact,  there are now published reports indicating that 
 some techniques are approaching human capabilities.  152,153 

 Privacy and security issues can be minimized by anonymizing training data and protecting 
 patient imagery and diagnoses the same way as healthcare data is protected. There is little 
 likelihood of abuse, but resilience is very challenging, as errors are very problematic. False 
 negatives (or underdiagnosis) result in untreated disease and false positives (or overdiagnosis) 
 cause patient anxiety, financial costs, and potentially unnecessary treatment. See  Section 11.4.4 
 for more on false positives. 

 Reproducibility of results is certainly needed and seemingly feasible. Explanation and Causality 
 would be very beneficial for acceptance by both medical professionals and patients. 
 Unfortunately, achieving these is difficult, particularly if the primary technique is machine-learned 
 image classification. 

 While the objective appears clear, its complexity relates to the toleration and distribution of 
 errors. While human doctors are imperfect, data science approaches must nearly always make 
 the right call. Society at large and its legal frameworks are likely to hold automated systems to a 
 higher than human standard. 

 Medical regulations, as well as the liability and ethical considerations relating to errors and the 
 associated financial risks, make the ELSI element rife with complexity. 

 Genome-wide Association Studies  ,  according to  Francis  Collins, the former long-serving 
 leader of the US National Institutes of Health, are defined in this way: “A  genome-wide 
 association study (GWAS)  is an approach used in genetics  research to  associate  specific 
 genetic variations with particular diseases. The method involves scanning the genomes from 
 many different people and looking for genetic markers that can be used to predict the presence 
 of a disease. Once such genetic markers are identified, they can be used to understand how 
 genes contribute to the disease and develop better prevention and treatment strategies.”  154,155 

 For example, GWAS has been used to show an association between certain variants located in 
 the FTO gene and an increase in the energy storing white adipocytes (fat cells) that contribute 
 to obesity.  156 

 Strictly speaking, GWAS refers to the gathering of genomic mutation data and associating that 
 with a label of interest (e.g., disease state). However, a typical published GWAS study will use 
 not only these data as the basis for a scientific result, but augment them with other qualitative 
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 and quantitative research. This includes the stratification of the population and researchers' 
 domain expertise in order to suggest not only correlations, but ideally mechanistic or causal 
 associations. This is both to reduce the risk of time-wasting, expensive, spurious results and to 
 speed the translation of positive results to treatments. 

 More generally, diseases may have many contributing causes (genetic predisposition and 
 specific exposures and patient activity over a long period) making the underlying analysis even 
 more challenging. Causal sequences may be very long, with some stimulus A influencing B1 
 and B2 in the same way; B2 influencing C; and C influencing D (say mortality). By just looking at 
 correlations, it would be easy to conclude that if B1 were somehow controlled, D might also be 
 controlled, but this would likely not be true. B1 is not in the causal chain, and also is a 
 confounder  ,  a non-causal correlate only associated  with disease.  Section 9.1  and particularly 
 Section 11.2  have further discussions on causality. 

 Against the data rubric element, GWAS requires genomic and phenotypic data for sure. It may 
 also need to contain other information about individuals such as age or race. They may also 
 need historical information covering diet, exercise, environmental risks, stress levels, and 
 communicable disease exposure, as these can trigger gene expression. There may be strong 
 reasons for the data to represent a complete cross-section of the society being studied. Health 
 data is often imprecise, inaccurate, incomparable across health centers or populations, and is 
 subject to many regulatory protections. All this makes its use difficult. 

 Even if all the data were available, a GWAS study might require an exceedingly complex model. 
 This is due to the possibility of delayed impacts (e.g., hereditary, late-onset Parkinson or 
 Tay-Sachs disease), complex causal pathways, and the previously mentioned risks related to 
 confounders. 

 Relating to the dependability rubric element, health-related data science applications require 
 laser focus on minimizing the risk of public exposure of private data. They must use the 
 anonymization and encryption techniques described later in this book. In the case of genetic 
 data, exposure not only affects individuals, but may also adversely affect their relatives. 

 GWAS results almost always trigger much additional work to pin down causality and find 
 therapeutic agents, so great care in engineering and statistics must be taken to minimize the 
 risks of errors. False positives are particularly prevalent. A positive association, if not carefully 
 promulgated, can result in useless or even harmful effects. However, systems may not need to 
 pay too much attention to abuse unless there is significant crowdsourcing of information. 

 At a minimum, systems need to show their evidence for associating particular genomes, and 
 perhaps other factors, with disease. It is impossible for a system to decree “trust me.” The 
 biomedical sciences strongly value peer review, so GWAS studies would be under great 
 pressure to publish methods, the data, and the detailed semantic understanding needed for its 
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 use. However, this is always difficult given the underlying data’s ownership and privacy issues 
 and the complexity of the analysis. 

 GWAS has reasonably clear high-level objectives, though there may be ambiguity in seeing the 
 right threshold of association vs. complete explanations to minimize wasted downstream efforts. 

 There are laws, some with significant financial and other penalties, governing how research 
 data is used. Others govern how human research subjects are both informed of risks and have 
 to consent to participation. There is significant risk to researchers, their institutions, and to 
 human participants should problems occur. The Belmont Principles address many of the 
 relevant ethical issues. 

 Understanding the cause of a disease  represents a  tremendous opportunity for data science. 
 It has the ability to aggregate information on disease incidence and on a growing number of 
 underlying, potentially causative factors including, though certainly not limited to, genetic 
 information. 

 However, gathering the needed breadth of consistent and comparable data faces considerable 
 challenges. Truly measuring and recording all the potential disease-causing factors would have 
 to deal with extreme privacy and security issues. Measures already in place to protect such data 
 add significant complexity to medical research data science applications,  157  and even more 
 measures might be needed. Abuse is unlikely to be an issue, but resilience is important. The 
 technical approach may be very difficult due to the breadth of the problem. Among other things, 
 many factors (e.g., environmental ones) may take years or decades to cause disease. 

 Objectives are clear. Failures are acceptable if they are not too likely or costly and if results can 
 be independently confirmed. 

 Table 6.3 Medicine and Public Health Applications of Data Science 

 Medicine and public 
 health applications 

 Tractable 
 data 

 Feasible 
 technical 
 approach 

 Depend- 
 ability 

 Under- 
 standability 

 Clear 
 objectives 

 Toleration 
 of failures  ELSI 

 Mobility reporting by 
 subregion during 
 quarantine 

 ✓  ✓  Tricky 
 privacy 

 ✓  ✓  ✓  Perhaps, 
 ethics 

 Vaccine distribution 
 optimization - when 
 limited supply 

 ✓  Plausible ✓  ✓  "Why" is 
 needed 

 Numerous, 
 conflicting 

 ✓  Ethics 

 Identify disease 
 outbreak from 
 aggregated user inputs 

 ✓  Plausible ✓  Abuse, 
 resilience, 
 privacy 

 Explanation, 
 reproducibility 

 ✓  ✓  Perhaps, 
 ethics 
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 Disease 
 diagnosis 

 Training 
 data 
 difficult to 
 obtain 

 ✓ for some 
 diseases 

 resilience  Reproducibility, 
 explanation, 
 possibly 
 causality 

 Agreeing on 
 error rates 

 Wrong 
 diagnoses 
 very 
 harmful 

 Legal, 
 risk, 
 ethics 

 Genome-wide 
 association study 

 Difficult to 
 obtain 

 Complicated 
 by 
 confounders, 
 complexity 

 Privacy, 
 security 

 Reproducibility, 
 explanation, 
 possibly 
 causality 

 Agreeing on 
 error rates 

 ✓  Ethics 

 Understanding cause 
 of a disease 

 Difficult to 
 obtain 

 Complex  Privacy, 
 security 

 Reproducibility, 
 explanation, 
 possibly 
 causality 

 Agreeing on 
 error rates 

 ✓  Ethics 

 In the category of understandability, scientists need reproducibility to validate results. Beyond 
 our previous medical examples' need for explanation, this application is (by definition) trying to 
 show causality to enable development of good public health measures, prophylactics, or cures. 
 For example, for many years, correlation between coffee drinkers and cancer implicated coffee 
 as a carcinogen. But researchers eventually concluded that coffee consumption was correlated 
 with cigarette smoking, and smoking turned out to be the smoking gun. See  Section 11.2  for 
 more on causality. Applying data science to understand the causes of disease is challenging 
 across all rubric elements. 

 6.4 Science-Oriented Applications of Data Science 

 As discussed in  Section 2.1  and  Section 4.4  , data  science can be of enormous value to science. 
 At a minimum, it can provide the intuition for creating more and better hypotheses. It can also 
 generate new knowledge and contribute to understanding causality. In this section, we discuss 
 two more examples of using data science in the scientific realm. 

 Determining the historical temperature of the universe  is a scientific application that has 
 confirmed the universe has warmed tenfold by some metrics.  158,159  Scientists have determined 
 this by amassing data from the Sloan Digital Sky Survey (SDSS) and the European Space 
 Agency’s Planck Infrared Astronomical Satellite. As background, every day the SDSS 
 accumulates 200 gigabytes of data, all of which is eventually made public, so there are no 
 privacy or security issues. More than 5,800 scientific papers using this data have been 
 published. 

 Table 6.4 Science-Oriented Applications of Data Science 

 Science-oriented 
 applications 

 Tractable 
 data 

 Feasible 
 technical 
 approach 

 Depend- 
 ability 

 Under- 
 standability 

 Clear 
 objectives 

 Toleration 
 of failures  ELSI 

 Determining the 
 historical temperature of 

 ✓  ✓  ✓  Reproducibility  ✓  ✓  ✓ 
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 the universe 

 Weather or earthquake 
 prediction 

 Insufficient 
 sensor 
 coverage 

 Very 
 complex 
 problem 

 ✓  Explanation, 
 reproducibility, 
 causality 

 ✓  Some 
 harmful 

 Risk 

 In this case, scientists gathered two million spectroscopic redshift references from the SDSS 
 (measuring the speed at which celestial objects are moving) and combined these with sky 
 intensity maps (which indicate temperature). Since objects moving faster are further away, and 
 their measurements are from longer ago, the scientists thus had a technical approach for 
 measuring the change in temperature over time. In this instance, the scientists’ deep theoretical 
 understanding lets them apply big data and get their desired results. There was no problem with 
 reproducibility because the astrophysical data was publicly available and the scientists could 
 publish their models. 

 Weather or earthquake prediction  are data science  applications based on different physical 
 principles, though like the astrophysics example, they center around forecasting. Weather 
 predictions are now useful enough that we rely on them daily, but earthquake prediction has 
 achieved only limited success. For somewhat distant earthquakes, systems can provide 
 seconds of advanced warning since electronic broadcasts travel faster than seismic waves. 

 For weather forecasting, it has been demonstrated that more sensor data, such as 
 temperature/pressure/wind data, at more locations, improves forecasting. Seismologists believe 
 this may also be true in their domain. Weather prediction models are hugely complex and small 
 errors in the measurements or the models can cause large changes in the predictions. 
 Furthermore, small differences in an event's location (e.g., the exact path of a tornado) can 
 result in very different effects. 

 For earthquakes, modeling is at a very early stage, though hopefully machine learning 
 approaches will prove useful.  160  For new data science  approaches, scientists will want 
 reproducibility to verify the results. If data science leads to new scientific results, providing 
 explanation or demonstrating causality may also be important. If society were to become 
 dependent on earthquake predictions, ELSI rubric elements could be of considerable 
 importance. The risk from mistakes could be considerable, both in economic and human costs. 
 However, at least these scientific examples have no privacy risks. 

 6.5 Financial Services Applications of Data Science 

 The financial services sector is a huge part of the economy. In the United States, it contributes 
 about 10% to the GDP and includes sectors such as banking, investing, insurance, lending, and 
 more. Prediction problems abound because of the enormous value in knowing a future interest 
 rate, an equity or bond price, the likelihood of a claim or a default, or even a customer's real 
 identity. Good predictions strongly reward those who can make them, encourage safe practices 
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 because of insurance pricing incentives, and may benefit society at large by guiding capital to 
 areas of higher returns. 

 To support prediction models, companies and governments are capturing ever-growing amounts 
 of data including detailed information on customers, businesses, markets, and financial 
 transactions. Some countries, such as India and China, are pushing hard for almost all 
 transactions to be digital to enable easy capturing of almost all financial data. 

 Very large datasets coupled with statistical and machine learning techniques are already used 
 to evaluate individual investments, create portfolios of those investments, and analyze their risk 
 under varying assumptions. Data science applications may provide insight to analysts and 
 portfolio managers who then apply their own discretionary judgment. Alternatively, algorithmic 
 investors might also use them to draw conclusions and execute investment choices, as 
 described by the book  Inside the Black Box  .  161  Recently,  consumer finance has been affected by 
 automation with the advent of Robo Advisors providing individual investors automated 
 investment advice. 

 Data science is also used to detect fraud and to ensure compliance with anti-fraud regulations, 
 such as Know-Your-Customer identification rules. Its tools predict health, mortality, and 
 property-casualty risks, and thus contribute to pricing insurance policies. Data science helps 
 predict customer wants and needs, thereby better tailoring marketing campaigns and 
 recommendations. 

 However, even with voluminous data, many of financial services’ data science problems are 
 hard to solve. Much of the data requires immense processing to make it comparable. Some 
 data, such as stock prices, must be available nearly instantly. Furthermore, in some finance 
 applications, market dynamics can rapidly change and invalidate previously useful predictive 
 models. 

 Almost all financial services problems use confidential customer data, and so have significant 
 privacy and data security risks. There are also security risks beyond data loss, because bad 
 actors or nation states have motivation to spy on or attack individual institutions or the financial 
 sector at large. Below, we’ll say a few more words on each element of  Table 6.5  . 

 Table 6.5 Financial Services & Economic Applications of Data Science 
 Financial services 
 and economic 
 applications 

 Tractable 
 data 

 Feasible 
 technical 
 approach 

 Depend- 
 ability 

 Under- 
 standability 

 Clear 
 objectives 

 Toleration 
 of failures  ELSI 

 Stock market 
 investment selection 
 and trading 

 Depends on 
 approach 

 Complex but 
 there are 
 successes 

 Depends 
 on 
 approach 

 ✓ opacity may 
 be acceptable 

 ✓  Certain 
 failures 
 intolerable 

 Legal, 
 risk, 
 ethics 
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 Underwriting/pricing of 
 property/casualty 
 insurance 

 ✓  ✓  Privacy, 
 security, 
 abuse, 
 resilience 

 Explanation  Competing 
 objectives 

 ✓  Legal, 
 risk, 
 ethics 

 "Know Your Customer" 
 warnings for financial 
 entities 

 ✓  ✓  Tricky 
 Privacy, 
 Security 

 Explanation  ✓  Some, not 
 all 

 Legal, 
 risk, 
 ethics 

 Country-wide 
 economic prediction 

 Insufficient 
 data 

 Feasibility 
 unproven 

 Privacy, 
 security, 
 abuse, 
 resilience 

 Explanation, 
 reproducibility, 
 causality 

 ✓  Probably  Legal, 
 risk, 
 ethics 

 In  Stock market investment selection and trading  ,  data scientists with specialized 
 finance-related knowledge called quants, modelers, or researchers choose datasets and create 
 models that recommend trading financial instruments to construct profitable portfolios. These 
 activities are often referred to as  quant trading  or  algorithmic approaches to investment. 

 Much of the vast and diverse quantity of data has low predictive value. Market-oriented 
 prediction problems are game-theoretic in that other profit-seeking players may change the 
 financial situation before one can profit from a prediction. In high-speed trading domains, 
 predictions are made and acted on in microseconds. 

 In addition to the most obvious task of  forecasting  a tradeable entity's price at some future 
 time, quants consider numerous other factors including: 

 1.  The market impact of the trade itself. If a firm is buying or selling a large amount of 
 something, buy orders tend to raise the price and sell orders have the opposite effect. 
 This  slippage  results in a lower trade value. 

 2.  The way the trade should be executed. The proper setting of the size and timing of 
 orders can benefit the prices paid or received. 

 3.  The portfolio optimization so that its individual components' aggregated value has a 
 higher likelihood of achieving investor goals. 

 There are many approaches to creating prediction and optimization algorithms. Earlier 
 algorithms were based on statistical regression, but today they increasingly involve machine 
 learning. Models are validated by back-testing them on historical data and forward testing them 
 on simulated future scenarios. 

 But it is difficult to know how well the simulations will correspond to the actual future. Model 
 development is challenging because investors want to (a) maximize expected returns, (b) avoid 
 big negative swings, and (c) have some resilience to unforeseen circumstances, such as 
 significant changes in investor sentiment. Certain quant challenges, such as price forecasting, 
 are particularly prone to such changes in sentiment, while others, such as trade execution, are 
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 less so. When sentiment changes are rapid and broad, they are called  regime change  ,  a topic 
 that  Section 9.1  addresses in more depth. 

 Algorithms do not have to provide insight as to why they work, though investors would certainly 
 prefer to know. Objectives are usually quite clear. Poor results have some degree of 
 acceptability, since investment returns are known to be probabilistic. However, certain types of 
 errors require regulatory disclosure that cause both reputational and financial risk. For example, 
 firms cannot exceed certain ownership limits on securities or commodities, and they must 
 disclose errors they make. Most investment activities are highly regulated, meaning many 
 seemingly predictive models may be off-limits with serious legal risks for violations. 

 There are ethical risks, for example, in achieving justice. For example, data science makes it 
 possible to create products that lure naive investors while giving professional investors 
 opportunities to achieve high returns from mining their data and mistakes. This can result in 
 potentially undesirable wealth transfers. 

 Underwriting/pricing of property/casualty insurance  is a data science problem with a long 
 history dating back to antiquity. The 17th century saw increasing use of math and data in 
 evaluating risks, with the actuarial profession being formalized in the mid-18th century. Today, 
 vastly more data is available for predicting risks and pricing insurance policies, but it is often 
 hard to assemble. Additionally, regulations may prohibit using certain data, such as zip codes for 
 property-casualty insurance or gender for automotive insurance (because using them could lead 
 to unfair bias). 

 Technical approaches abound, given large amounts of historical data and since, for insurance, 
 the past is usually a predictor of the future.  F  The heavy dependence on individual client data 12

 may cause even greater security and privacy challenges than it does in investment 
 management applications, and approaches must be resilient in the face of unexpected behavior. 
 Abuse typically relates to guarding against false claims or fraudulent representations during 
 application processes. 

 Objectives are quite complex and must balance at least all of the following: 

 ●  Pricing decisions that will win customers 
 ●  Expected profitability margins, 
 ●  Overall risk to an insurer of specific portfolios (given an insurer may not want too many 

 eggs in one basket), and 
 ●  Equitable treatment of subpopulations. 

 Insurance typically cannot use opaque approaches due to needed regulatory reviews. As with 
 investing, losses are inevitable, but certain failures are unacceptable. Legal and ethical issues 

 12  While the past is  usually  a predictor, climate change  could increase property claims, and increased 
 human lifespan could be increasing costs for insurance such as long-term care insurance. 
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 abound, certainly when considering the pros and cons of different regulatory regimes. As an 
 example, EU regulations require auto insurance products not to consider gender, though young 
 men and young women drivers presumably have differential risk. 

 Know your customer  (KYC)  compliance regulations are  part of anti-money laundering laws to 
 prevent criminal money management use of the financial system. KYC obviously begins with the 
 ability to accurately identify a criminal. This may be more accurately determined by the pattern 
 analysis of activities than from what an account application states. With vast amounts of 
 transactional data available, both hard-coded algorithms and machine learning approaches to 
 clustering and prediction can be applied to warn about suspicious behavior. 

 We need transparency since regulators want to know financial institutions are applying proper 
 due diligence. Guarding against abuse is what this is all about, and this anti-abuse system is 
 itself subject to abuse! Inevitably there are major legal, risk and ethics challenges. For example, 
 KYC systems will inevitably have occasional false positives that point a finger at innocents. 
 Thus, it is ethically crucial for different sub-populations to be treated fairly. Additionally, 
 automated systems require human appeals channels to resolve problematic results. 

 Country-wide economic predictions  might be better  made using the torrent of data and 
 techniques used by financial services firms. While this is in the tradition of econometric 
 forecasting, predictions might be more timely and accurate if guided by far more real-time data. 

 In 2009, Varian and Choi wrote about using aggregate information on Google Search traffic to 
 better predict sector activities (e.g., retail or home sales) that are material to an economy as a 
 whole.  162  The trend towards using more data has continued,  163  and in 2021  The Economist 
 summarized its growing importance in “The Real-Time Revolution.”  164 

 Perhaps, as economies are increasingly digitized, individual transaction data could be utilized 
 for more timely and specific economic prediction and, perhaps, more accurate and effective 
 governmental interventions. One can almost, in a science fiction sense, envision a world where 
 policy makers have a large real time economic dashboard with economic controls and predicted 
 impacts of all changes. It is not our goal to invent such a system, but rather to map such an 
 application against the Analysis Rubric. 

 Trying to use all economic transactions would result in a truly huge amount of data. The needed 
 models would be very complex and hard to test, in part because an economy has so many 
 different possible configurations and is affected by so many different stimuli. As with investment 
 optimization, changes in consumer or business sentiment may cause regime change and render 
 existing models unpredictive. Dependability issues are extreme; there are the risks of exposing 
 all citizens' transaction data, security attacks that cause economic warfare, and the resilience 
 problem of the “Oh no, we forgot to include that effect!” as well as many others. 
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 Opaque systems that are neither reproducible nor comprehensible are probably unacceptable. 
 For example, economic policy makers would find it very hard to act on economic predictions to 
 change interest or tax rates without first understanding them. While it is easy to find correlates 
 with economic growth, causality, especially over the long-term, is hard to show. Forecasting 
 would seem to have clear objectives, but there would be difficulty in determining the requisite 
 granularity and necessary accuracy. While forecasting will always be imprecise, some failures 
 would have catastrophic effects affecting entire nations. There is no end to the legal and ethical 
 risk. 

 We end this section on financial services by noting its data science applications are continually 
 evolving with the growth in data, computational capability, and machine learning. The final 
 example was more of a grand challenge research problem pushed to the limit. But there is no 
 doubt that the increasing amount of data coming from the economy's digitization will lead to 
 significant changes in economic forecasting. 

 6.6 Social, Political, and Governmental Applications of Data Science 

 Governments provide diverse and critical services to vast numbers of people. Operating at 
 scale, there is great opportunity to sense opinions, needs, successes, and outcomes, and to 
 optimize results. Possible uses range from political campaigns to operations of state agencies 
 and include the domains of economics, health, education, and more. 

 Targeting in political campaigns  refers to the interest  that political candidates have in knowing 
 what positions appeal to voters, which communication channels to use, and even what exact 
 words to use to disseminate their positions. Furthermore, candidates do not want to waste 
 resources either in areas they are sure to win or which are hopeless for them. In systems where 
 candidates need to fundraise, data science is critical for helping candidates focus their 
 messages as well as the target audiences to raise the most money. For better or for worse, big 
 data allows candidates to truly slice and dice populations and send out targeted messages to 
 best appeal to fine-grained constituencies.  165 

 Significant amounts of data are already available. In the US, data begins with voter registries 
 from which campaigns can get voting rolls (including party registration) and historical data on 
 when individuals have voted, though NOT for whom they voted. Political parties and both 
 not-for-profit and for-profit entities augment this data with additional individual and aggregate 
 district data. For example, campaigns commission polls to learn voter positions and interests. 

 The application space is broad with many applicable clustering and prediction techniques. For 
 example, campaigns predict the likelihood of sympathetic voters within a small region and then 
 target voter registration drives to those regions with mostly sympathetic voters. There are the 
 usual privacy and security issues with some personal data, though campaigns can buy 
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 recommendations from others and possibly avoid directly holding too much data. Abuse is 
 increasingly likely, even by nation state actors seeking only to create chaos. 

 Given western democracies' extreme focus on elections, election-related data science is a fertile 
 area for seeing how objective functions vary: 

 ●  Candidates may have different goals at different times. During a primary, they need to 
 maximize votes from members of their own party. During the general election, they need 
 to maximize votes across a more politically diverse electorate. Data scientists on a 
 campaign may suggest a candidate’s approach and messaging vary accordingly. 

 ●  An individual vote's value may differ depending on the voting district. A vote in a 
 contested district is far more important than one from a safe district. The fluidity in 
 changing voter perceptions makes this challenging. 

 ●  Fundraising may try to either maximize total funds raised, or perhaps demonstrate a 
 broad-based groundswell of appeal by receiving many small donations. 

 Political campaigns may well accept opaque systems, and certain failures are both likely and 
 acceptable, given the application's inherent uncertainty. There are legal regulations on 
 campaign operations, but the biggest ELSI challenges are ethical. Candidates need to balance 
 their own views on what is “right” with increasingly explicit recommendations on what positions 
 the electorate wants them to take. Data science may also tell a candidate that one part of the 
 electorate wants them to take position A, while another part wants the opposite position B. This 
 leaves a candidate to decide whether to take no stand, to choose one stand, or possibly to take 
 different stands with different audiences. While candidates have always had to make such 
 complex decisions, data science quantifies them and makes them explicit. 

 Table 6.6 Government Service and Political Applications of Data Science 
 Government 
 service & political 
 applications 

 Tractable 
 data 

 Feasible 
 technical 
 approach 

 Depend- 
 ability 

 Under- 
 standability 

 Clear 
 objectives 

 Toleration 
 of failures  ELSI 

 Targeting in political 
 campaigns 

 ✓  ✓  Privacy, 
 security, 
 abuse 

 ✓  Competing 
 objectives 

 ✓  Legal, 
 ethics 

 Detect maintenance 
 needs 

 Insufficient 
 sensor 
 coverage 

 ✓  Security, 
 resilience 

 ✓  Complex 
 due to 
 prioritization 

 Certain 
 failures 
 intolerable 

 Legal, 
 risk, 
 ethics 

 Personalized 
 reading tutor 

 ✓  ✓  Privacy, 
 security, 
 abuse, 
 resilience 

 Explanation  ✓  ✓  Legal, 
 risk, 
 ethics 

 Criminal sentencing 
 and parole decision- 
 making 

 ✓ but may be 
 hard to 
 assemble 

 ✓  resilience  Explanation, 
 reproducibility 

 Conflicting  Individual 
 freedom & 
 societal 
 welfare 

 Legal, 
 risk, 
 ethics 
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 We briefly cover the next two topics: 

 Detecting maintenance needs  is a considerably more mundane application than targeting in 
 political campaigns. Data science can make it possible to provide early warnings of potential 
 failures based on data from vibration, corrosion, and other failure precursor instrumentation or 
 from crowdsourcing from cameras or vibration sensors on vehicles.  166  These warnings are 
 important because it's both safer and more cost-effective to identify and fix problems prior to 
 failure than after. 

 Depending on the specific application, there are a variety of models to use this data, taking into 
 account structural, failure, and risk properties. Remember though, there is always the challenge 
 of balancing false positives with false negatives. Also, bad actors might try to interfere with a 
 systems operation to cause societal harm. Maintenance officials must understand this 
 application's objectives and coverage to avoid complacency leading to undetected errors and 
 catastrophic failures. 

 As our next example, we turn to the domain of  education.  While there are many possible 
 examples, ranging from school budgeting to student/class scheduling to personalized learning, 
 we focus on the latter. 

 For subjects taught to most students, such as reading and writing, there are vast amounts of 
 pupil data to work with, and it might be possible to create customized education that better 
 motivates students and is more effective. In the 1980’s, researchers such as Benjamin Bloom 
 showed that students learn best with an approach known as  mastery learning  –  studying a 
 subject at their own pace until mastery is reached.  167  Having an individual tutor to guide each 
 student has been prohibitively expensive, but systems that gather individualized data may make 
 it possible. 

 Personalized reading tutors  are a good place to start.  Already, there are online reading tutors 
 for early childhood education that provide compelling material and immediate student feedback 
 based on individual interests and level of mastery. Online reading education could be extended 
 to additional populations, as data science techniques could categorize vast amounts of reading 
 material. Systems could learn from a large student population's signals, such as engagement or 
 comprehension. Their prediction abilities could reduce boredom from repeating known materials 
 or the confusion caused by excessively fast-paced instruction. 

 Student data collection is a serious concern from a privacy and security perspective. However, 
 resilience would seem the biggest dependability problem if optimization techniques can fail. As 
 in healthcare, widespread adoption of educational innovations may require proof of success in 
 small, controlled trials. This makes explanation and reproducibility of high importance. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  98 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 Reading education's exact objectives are often unclear and vary by region and over time. There 
 are also debates on how best to teach the subject. This makes it hard to create applications that 
 can be deployed widely, which reduces both available funding and data. Failures are harmful, 
 and education involves significant ethical issues. Applying the Belmont beneficence principle, 
 we must carefully balance the benefit and risk to a student’s educational progress when 
 replacing a known approach with an automated tutor. Educational solutions must benefit many 
 students, so balancing benefits is challenging. 

 Criminal sentencing and parole decision-making  is  our final example. Data science 
 applications in this area might provide judges with  decision aids for use during pre-trial 
 detention, criminal sentencing, and parole assignment. These tools could enable judges to 
 make decisions more consistently and lessen the variability of human judgment. They could 
 better ensure consistency by a single judge over the course of each day or over an entire 
 judicial tenure. Better yet, they could ensure some degree of consistency across judges in the 
 same or different jurisdictions. For example, tools could mitigate “serial position effects,” the 
 widely-studied biases that may influence judicial decisions based on when a case is 
 scheduled.  168  Ideally, individuals with similar criminal  histories who commit the same crime in 
 similar circumstances would be treated similarly, which is called  algorithmic fairness  .  169 

 Today, US courts are using such tools, though some researchers have shown that the risk 
 assessment tools are statistically biased.  170  However,  other researchers have shown that using 
 data-driven decision aids can reduce bias and increase accuracy of pre-trial decisions.  171  There 
 is more detail on this in  Section 12.3  on Fairness. 

 In principle, the needed data is available. In practice though, different jurisdictions may collect 
 different types of data and differently code/format what they have. Data can be incomplete and 
 noisy, and data collected for the same individual can be inconsistent. Moreover, many criminal 
 justice systems still use manual processes, so much data may still be only on paper. Data must 
 be balanced in the sense that it will not lead to unfair treatments for any population. Once 
 sufficient data is available and processed to be comparable, we can apply straightforward 
 statistical models, from logistic regression to deep learning. 

 An algorithmic decision-making tool's failure can have disastrous and potentially long-term 
 consequences. Choosing to develop and deploy such tools demands consideration of the ethics 
 and societal risks, not just the statistical challenge. Denying bail or parole to a low-risk individual 
 can have mental and economic consequences for the person and his/her family. Granting bail or 
 parole to a high-risk individual could lead to another crime.  We will refer back to this example in 
 Chapter 7  , and also have more to say on it in the  context of fairness in  Section 12.3  . 
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 Chapter 7. A Principlist Approach to Ethical Considerations 

 In this chapter, we describe how the ethical framework we introduced in  Chapter 3  , based on 
 the Belmont principles of respect for persons, beneficence, and justice, can be applied in the 
 context of data science. This principlist approach to ethics attempts to provide a shared analytic 
 framework and vocabulary to help communities and teams resolve difficult questions. Principles 
 are most useful when broad enough to be comprehensive and capture, rather than ignore, the 
 tensions that make questions of “right” and “wrong” so difficult. 

 As the Belmont report states: “the objective is to provide an analytical framework that will guide 
 the resolution of ethical problems,” however, “these principles cannot always be applied so as to 
 resolve beyond dispute particular ethical problems.” That is, our goal is not to provide a 
 universal yes-or-no algorithm for ethics. Rather, it is to guide ethical decision-making so it 
 provides practitioners and stakeholders a shared understanding of a decision-making process 
 and logic. 

 To illustrate, we chose five of  Chapter 6  ’s use cases  to explain with respect to the Belmont 
 principles: criminal sentencing, newsfeed recommendation, vaccine distribution, mobility 
 reporting, and insurance underwriting. The three principles are not ranked in importance, and 
 each example may not have concerns related to all three. As in the context of Belmont’s original 
 deliberations, “beneficence” includes not only individual harms and benefits but also those of 
 society at large. 

 The observation that a data science application may not satisfy each Belmont principle does not 
 necessarily mean we advocate discontinuing the application. Vaccine mandates, for example, 
 would prioritize public good over individual autonomy. This complexity of this balance is 
 reflected in US law: “Since Jacobson v Massachusetts (1905), the judiciary has consistently 
 upheld vaccination mandates,”  172    while there are  COVID-19 vaccination decisions that show 
 nuance. The original Belmont Report, similarly notes of principles: “at times they come into 
 conflict” and “cannot always be applied so as to resolve beyond dispute particular ethical 
 problems.” Instead, they are meant to “provide an analytical framework that will guide the 
 resolution of ethical problems.” 

 Here are applications of the Belmont framework's three principles to some of  Chapter 6  ’s 
 examples: 

 Criminal sentencing, and parole decision-making:  As  discussed in  Section 6.6  , algorithms 
 for criminal pre-trial, sentencing, and parole decisions are fraught with ethical challenges: 

 Respect for Persons  : All stakeholders' autonomy would  be challenged if such 
 algorithms were opaque: defending attorneys lack understanding of how decisions are 
 made now, and defendants who may become incarcerated lack understanding of how 
 their actions may be scored in such an automated decision system. The transparency 
 paradox discussed in  Chapter 3  thwarts complete information.  Instead of over-explaining 
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 technical subjects or under-explaining (which can lead to deceptive or unfair practices), 
 proponents of increased use of automated decision systems can adopt a “tiered” 
 approach.  173  This would involve explaining the basic  concepts in plain language while 
 providing extra detail to those who want increased transparency. Another concern is the 
 likely event that algorithmic approaches do not provide interpretability. The answer to 
 “why” a decision is rendered is both important and perhaps not answerable. 

 Beneficence  : The claimed benefits of using such algorithms,  such as efficiency and 
 uniformity, must be explicitly evaluated with respect to their impact on many parties and 
 performance versus existing human approaches. These include defendants, potential 
 parolees and other stakeholders, including the judiciary, the criminal justice system, and 
 society writ large. For example, algorithms may be trained to minimize expected errors 
 against a test set (e.g., prior decisions by human judges). However, this training may not 
 minimize the total number of future crimes, the total expense of the justice system, or 
 other more beneficial, societal goals. 

 Justice  : Biases resulting from deploying algorithms  for criminal sentencing and parole 
 decision support – e.g., different model outputs for demographically different defendants 
 with similar criminal data – is the subject of ample research and journalistic inquiry.  Many 
 of these inquiries argue, via statistics as well as case studies and interviews, that some are 
 benefiting relative to others.  Also, perfectly accurate  models trained on biased data 
 perfectly reproduce these biases. As discussed in  Section 6.6  , the use of data science in 
 algorithmic sentencing and parole decisions catalyzed research discussions on the 
 multiple ways to quantify fairness.  174  We discuss  this in more detail in  Section 12.3  . 

 In short, this example includes a variety of data science and societal challenges. The ethical 
 considerations are clear, with reduced accountability, serious risk of harm to individuals and 
 society, and opportunity for amplifying unfairness and injustice as applied to individuals. 
 However, there could be enhanced judicial uniformity and possibly other benefits. Aside from 
 ethical considerations, different stakeholders (defendants, lawmakers, members of the judiciary) 
 might have extremely different notions of what objective an algorithm is to optimize. 

 News feed recommendation:  As discussed briefly in  Section 4.3  and  Section 6.2  , news feed 
 recommendations are considerably more challenging than music recommendations. News 
 corpuses vary in size and quality, as well as the motivations of those who add to them. News 
 also has a much greater impact on individuals and society. 

 Respect for Persons  : Informed consent is challenged  when news recommendation 
 algorithms are opaque. The transparency paradox is exacerbated given their complexity, 
 which prevents even their designers from fully understanding the resulting technical 
 systems. A widely-discussed example of informed consent was Facebook's 2012 
 “Emotional Contagion” automated new feed experiment. published in  PNAS  in 2014.  175 

 In this experiment, Facebook users’ news feeds were experimentally manipulated to 
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 amplify posts of positive or negative sentiment. Subsequent posts by those users were 
 then used to quantify whether the algorithmic changes caused subsequent increased or 
 decreased happiness.  Section 12.4  has more detail  on this. 

 Beneficence  : These algorithms can indeed inform and  delight when delivering content 
 that optimizes engagement through joy and surprise. However they can also create filter 
 bubbles (  Section 12.4.2  ) or amplify fear or hate,  leading to a radicalizing “rabbit hole.”  176 

 The complexity of content ranking algorithms, and the unpredictability of their impact on 
 users’ well-being, is driving companies to spend more time investigating unanticipated 
 ways content recommendation may lead to harm. Of course, they also have to develop 
 ways to mitigate these effects.  177  We need long-term  studies, where users' behavior is 
 observed for several weeks or months, for developers to know the impact of a news 
 feed’s content recommendation algorithm. 

 Justice  : Without question, algorithms affect different  societal groups in different ways, 
 leading to many considerations of fairness. Some impacts are benign (perhaps, a 
 propensity for a subgroup to get sports entertainment recommendations), while others 
 reinforce societal problems. 

 We have chosen this example because there has been increasing societal reliance on 
 algorithmic news feeds. This has led to increased public scrutiny. The complexity of the 
 algorithms prevents designers and readers alike from understanding what content and 
 worldview is being amplified. As to harms, the attribution of benefit and risk to these algorithms 
 is debated daily in the press, by researchers, by companies doing news recommendations 
 (including their own researchers), and by lawmakers and regulatory agencies. 

 Vaccine distribution optimization:  Distributing a  vaccine with supply, logistical, and vaccine 
 hesitancy constraints is a truly complex problem, as briefly discussed in  Section 6.3  . 

 Respect for Persons  : This is a concern as societies  increasingly pressure and even 
 mandate that vaccine skeptics be vaccinated. If vaccines were outright forced, 
 vaccination would violate the principle of informed consent. Society-level rationing also 
 reduces individual autonomy. 

 Beneficence  : Beneficence's role in vaccine distribution,  particularly since both the 
 supply and distribution channels may be limited, is extremely difficult to know in 
 advance. The coupling of optimization and health policies requires complex trade-offs, 
 e.g., between supporting opening schools or reducing disease in prisons or assisted 
 living facilities. Here, a commitment to beneficence includes adjusting distribution policy 
 as supplies and health policies change and as the effects of a distribution policy become 
 evident. 

 Justice  : At the individual distributor level, whether  state or private, appointment booking 
 mechanisms have varied usability and interface complexity. The technology divide may 
 contribute to a “vaccine divide” among those with and without the technology access to 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  102 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 secure vaccine appointments. The digital divide may correlate with demographic divides 
 and could result in unfair outcomes. 

 We have included this example because of its widespread importance and serious ethical 
 complexity. Even though data-driven models are needed to optimize vaccine distribution, ethics 
 are of paramount importance in this example, and balancing objectives is particularly complex. 

 Mobility reporting:  The Google team that showed aggregate  regional movement trends was 
 cognizant of the need to preserve individual location privacy and effectively used differential 
 privacy techniques to protect that data. (See  Section  10.1  for more on differential privacy.) 
 However, even if individual privacy is preserved, using geographical data gives rise to ethical 
 issues worthy of consideration. 

 Respect for Persons  : Neither any individual nor Google  would have contemplated in 
 advance that anonymized location data would be used for this purpose. However, 
 Google’s anonymization policy is explicitly written to allow Google wide latitude in the 
 use of anonymized data.  178  On the one hand, users  might be surprised, given how few 
 users read the policy. On the other hand, opt-in would have greatly reduced the likely 
 effectiveness of this application. 

 Beneficence  : Correlations between who is mobile and  how disease progresses offer 
 societal benefit for informing health policy. However, there may be implications to 
 individuals, even if identities cannot be inferred from published mobility data. For 
 example, mobility data could be correlated with widely available demographic data and 
 reinforce stereotypes or create societal divides. This same effect could occur in many 
 other applications that aggregate anonymized individual data. 

 Justice  : Since mobility data is often gathered via  smart phones, it risks being skewed 
 towards those users. This requires a careful analysis of the policy's efficacy and impact 
 based on such data. Sampling bias is discussed more in multiple places in  Part III  . 

 We used this example to show there are ethical concerns beyond the most obvious one, which 
 is privacy. It shows the subtle issues a design team must navigate even when the primary goal 
 is to produce an information system intended to benefit public health and policy. 

 Underwriting/pricing of property/casualty insurance  :  Ascertaining risk to enable better 
 selection pricing of insurance policies is a traditional application of data, and it is significant 
 given how important it is to people. As discussed in  Section 6.5  , data can be applied to many 
 aspects of the problem space. 

 Respect for Persons  : Availability and pricing of insurance  should be based on the 
 specific risks of an individual application, not exogenous factors which may not be 
 related. Opaque algorithms which set loan policies and insurance rates for individuals 
 challenge the concept of informed consent, as neither applicants nor insurance 
 regulators may be able to determine the rationale for an underwriting decision. Some 
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 who particularly need insurance (e.g., those in fragile economic circumstances) have 
 diminished autonomy, possibly meriting increased protections against 
 hard-to-understand or deceptive terms and conditions. 

 Beneficence  : Increased use of more personal data can  itself affect the risk-taking 
 behavior of individuals or groups. For example, high penetration of insurance and low 
 reimbursements could drive practitioners out of a medical sub-field, causing societal 
 harm. Insurance's increased use of personal health information could also motivate 
 individuals to avoid useful health diagnostic tests, thus causing societal harm due to a 
 lack of preventative testing or even increased disease transmission. 

 Justice  : Such algorithms can reinforce societal bias,  e.g., if they are accurately trained 
 to reproduce biased human insurance underwriting decisions, they would constitute a 
 form of “digital redlining". Data could facilitate the creation of new, finer-grained risk 
 pools (for example, assigning people with genetic predisposition to disease) thereby 
 increasing differentials in insurance costs. This unequally distributed harm illustrates the 
 Belmont Report's multiple meanings of justice, “in the sense of ‘fairness in distribution’ or 
 ‘what is deserved,’” to quote the original. 

 We include this example to illustrate how a mechanism that predates digital computation can, by 
 including far more data and complex algorithms, risk amplification of already present harms and 
 injustice. 

 To close, we refer back to Gottenbarn and Wolfe, who state, “...every decision requires us to 
 identify a broader range of stakeholders and consider how to satisfy our obligations to them. A 
 primary function of the Code is to help computing professionals identify potential impacts and 
 promote positive outcomes in their systems.”  91  While  they are talking about computing and the 
 ACM Code, their quote is also consistent with our principlist approach to ethics. It underlies our 
 view, as demonstrated with this section's five examples, that ethics must be considered as many 
 types of decisions are made. We believe that doing such analyses against a set of principles, 
 like the Belmont Principles, (1) reminds data scientists to think about difficult challenges, (2) acts 
 as a check on significant errors, and (3) motivates practical improvements. 
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 Recap of Part II – Transitioning from Examples and Learnings to 
 Challenges 

 Reaching the end of  Part II  , we hope our detailed  discussions of the initial six examples and the 
 somewhat more cursory discussions of twenty-six more have been enlightening: 

 ●  While we have not surveyed all possible applications, we hope we demonstrated data 
 science's valuable potential in domains ranging from research to entertainment to 
 medicine to commerce to finance to government, and more. In many cases, we also 
 explained a bit of their “how-to” and demystified how many applications operate. 

 ●  We showed that data science is often applied in different ways to multiple sub-problems 
 of an application. For example, in a video streaming application, we illustrated copyright 
 identification, video recommendation, search, and advertising. Video streaming could 
 also benefit from additional applications of data science, such as for closed captioning, 
 language translation, summarization, and more. 

 ●  By our repeated referral to the Analysis Rubric, we illustrated seven important 
 considerations in applying data science to a problem. We believe that examining an 
 application in detail against the rubric elements teases out its design's hard parts. 

 ●  Whether contemplating a new data science application or evaluating an existing one, 
 careful consideration of data science's unique and complex aspects is a necessity. While 
 the rubric elements are of necessity listed in a particular order, we fully recognize that 
 the application of the rubric may be done in a more bottom-up or top-down way, 
 depending on the application. 

 ●  Our analysis shows a few applications to be straightforward, many to be challenging, 
 and some to be very hard or perhaps presently impossible. When difficulties occur, they 
 are usually because: 

 ○  Data capture of sufficient quality and scale is impossible for some reason. 
 ○  Existing technical approaches are insufficient. 
 ○  The cost of achieving dependability is too high. 
 ○  Opaque approaches in either sense of the term are insufficient; furthermore, 

 there may be a particular need to prove causality. 
 ○  Objectives are in dispute. 
 ○  Failures are essentially intolerable. 
 ○  Insurmountable difficulties arise from the ELSI criteria. 

 Finally, we resumed our ethics thread. We explored how the principles set forth in  Chapter 3  can 
 guide us when applying data science to gnarly problems. 

 All of this sets the stage for  Part III  , a considerably  deeper discussion of data science 
 challenges. 
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 Part III. Challenges in Applying Data Science 
 In  Part II  we explored many data science applications,  some quite natural and others very 
 challenging, and we presented the Analysis Rubric to guide our evaluations. This part discusses 
 the challenges that arise from the rubric's elements, mirroring the order in which they were 
 previously presented: 

 Chapter 8  . Tractable Data 
 Chapter 9  . Building and Deploying Models 
 Chapter 10  . Dependability 
 Chapter 11  . Understandability 
 Chapter 12  . Setting the Right Objectives 
 Chapter 13  . Toleration of Failures 
 Chapter 14  . Legal, Societal, and Ethical Challenges 

 If we are to achieve the maximal benefits while minimizing risks, we need to understand these 
 data science challenges. Our goal is to provide a coherent survey of these topics, recognizing 
 that, individually, most of them are sufficiently involved to be the subject of numerous books. 
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 Chapter 8. Tractable Data 

 In advising companies on using machine learning, your authors have found that many 
 companies are initially excited because they have the necessary data. But they are also 
 apprehensive about the mathematical complexity of building a machine learning model. With 
 experience, they often realize that model building may be the easy part; the hard part is 
 establishing and maintaining a data pipeline to manage the data throughout its lifecycle. 

 In the early 2000’s, IBM Research worked with a large chauffeur service to optimize car 
 scheduling, capacity management, and crew assignment. Optimization opportunities were just 
 becoming tractable due to the availability of accurate vehicle location data and distributed 
 computing systems. This first appeared to be a great and rewarding project for IBM’s applied 
 mathematicians, who did indeed make the project a success. However, in the end, they weren’t 
 so happy. They felt they spent most of their time doing mundane engineering, rather than 
 applying their sophisticated mathematical knowledge. In the words of a recent article, “Everyone 
 wants to do the model work, not the data work.”  179 

 We will consider some of the challenges in generating, collecting, processing, storing, and 
 managing data, following co-author Jeannette’s data lifecycle model.  180  Other authors use the 
 term  ETL (Extract, Transform, and Load)  for the process  of making data useful for a specific 
 application. We mostly defer the crucial issues of data privacy and security to  Chapter 10  . 

 8.1 Data Generation and Collection 

 Data can come from different types of sources: 

 ●  Instrumentation  : The chauffeur service used data from  GPS sensors. In  Part II  we saw 
 other examples, such as the Sloan Digital Sky Survey’s use of telescopes, health 
 sensors, and infrastructure instrumentation. Self-driving cars use an array of sensors 
 including accelerometers, cameras, radar, and lidar. As the internet of things connects 
 more devices, ever more data will become available. 

 ●  Users  : Users may explicitly add data, as the dispatchers  did in the chauffeur example, or 
 they may implicitly contribute data, as do shoppers when they click on a 
 recommendation. Making it easy and natural for users to create data is part of quality 
 data science. This is not just user-interface design – it is more of an application design 
 problem to ensure users want to participate and create quality data. Users naturally have 
 privacy concerns with collecting their data; we cover that in  Section 10.1  . 

 ●  Third parties  : Existing data may be readily available,  for example, from publicly available 
 web data. Alternatively, data can be licensed or new data can be commissioned, from 
 another party. There are complexities in defining the terms of use and liability, the exact 
 technical requirements, and the pricing model. Data science applications at scale require 
 sophisticated procurement or licensing operations much like what is needed for 
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 managing a manufacturer's supply chain. 

 In case of failure, there must be a plan for alternative data sources, especially for systems 
 requiring high availability. In a nutshell, data does not often grow on trees, at least not ones with 
 easy to reach branches. 

 In addition to data sources, there must be secure and reliable transmission paths that can 
 handle the volume. There may need to be redundant communication channels so a channel's 
 failure doesn't lose or excessively delay data. Data may need to be compressed or encrypted. In 
 some applications, such as scientific instruments gathering petabytes of signal data, it may be 
 necessary to just sample the data and discard the rest. 

 8.2 Processing Data 

 Data may need to be checked and cleansed in many ways. To reduce the likelihood of receiving 
 erroneous information, applications must screen incoming data for errors. This is very 
 challenging, however, for it is extremely difficult, if not impossible, to determine whether 
 incoming data is erroneous, or indicative of a significant change. Data may need to be recoded 
 for internal use or for consistency or comparability (e.g., the same standard units of measure). 
 Broadly, the colorful term for all these data processing steps is  data wrangling  . Beyond these 
 steps, data may be compressed or encrypted to increase performance, decrease storage costs, 
 preserve confidentiality or compliance with data licensing commitments. 

 For example, in quantitative investment management, there are enormous data pipeline issues. 
 Stock splits require consistently adjusting stock prices, dividends, and holdings at the precise 
 instant a split occurs. The regular and extra-ordinary issuance of dividends and corporate 
 spin-offs further require continuing adjustments to make data comparable across time periods. 
 Stock indices periodically change their membership. Finally, the thousands of tradeable entities 
 – and vastly more if one considers bonds and derivatives – have some degree of flux and 
 require normalization before we can use even simple things like stock prices or volumes. 

 Beyond these normalization steps, converting data into useful signals for a data science 
 application may require sophisticated techniques. These may be machine learning systems unto 
 themselves, but at minimum, there are likely large numbers of available language or processing 
 libraries to transform incoming data into useful elements. The challenge of deciding how to 
 transform the incoming data is discussed in the next section. 

 Data may be very private and those handling it need to be good shepherds, instituting strong 
 privacy and security measures. (Again, see  Section  10.1  and  Section 10.2  for these.) For now, 
 suffice it to say that legal and ethical requirements may impact the data pipeline and the 
 operation of data science services: 

 ●  A data scientist working on email spam detection typically is not allowed to read any 
 customer’s email. Instead, the company might create its own email accounts and try to 
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 attract examples of spam messages. It might also ask its employees to donate mail 
 messages for use in spam-fighting research. 

 ●  Licensing agreements might restrict data use only to selected people or for particular 
 uses. This may force the use of restrictive storage and audit systems to both control 
 usage and prove that it has been compliant. 

 Another example is the fight against child pornography. One might think that internet service 
 companies could just match any uploaded photos against a library of known child pornography. 
 However, they cannot do this, because it is illegal to store this material. Thus, in the US, they 
 instead have a library of fingerprints (or, in computer terminology, hash values) of illicit images 
 obtained from the National Center for Missing and Exploited Children (NCMEC). They then 
 fingerprint uploaded images, look for matches against this library, and report them to NCMEC. 

 When there is little data, machine learning systems generally do not work well; indeed, there is 
 a reason the terms “Big Data” and “machine learning” frequently go together. Thus, a voracious 
 need for data is often machine learning's first challenge. For example, if it had very few labeled 
 images from which to learn, image identification would not be a success. Fortunately, image 
 processing applications are global in nature, and there is generally no training data shortage, 
 though there is a risk that limited data from some populations could create fairness issues. See 
 Section 12.3  on Fairness. The large amount of data  may still be difficult to gather and expensive 
 to process, but it is demonstrably feasible for organizations of sufficient scale. 

 However, the state space in some domains is so very large it may be impossible to gather a 
 large enough dataset. For example, so many different events influence economic growth, 
 inflation, and unemployment rates that it is very difficult to gather enough historical training data 
 to create macro-economic models. The amount of training data relative to the diversity of 
 possible economic situations is just too small. 

 8.3 Data Storage 

 The sheer quantity of data may also be a challenge, requiring sophisticated techniques to 
 distribute storage over many networked sites (for reasons of performance and reliability) while 
 still eliminating data redundancy and storing only useful information. Data compression 
 techniques, analogous to those that reduce the storage size of photos or videos help greatly. On 
 the other hand, regulations require many industries to keep vast amounts of historical detail, 
 making it problematic to delete anything. From an operational perspective, infrequently 
 accessed data is often stored on low-cost, archival media that may be difficult and expensive to 
 access. This may even be deliberate to reduce the risk of lost data, but these storage 
 mechanisms add to the complexity of deletion and may delay how long data is maintained after 
 someone requests its removal. 

 There are many different technologies with which to store data. Certain database systems may 
 optimize storage performance at the expense of retrieval (say, for rarely read data used for 
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 audits). Others may facilitate highly flexible queries (say, for data exploration). Yet others may 
 support reliable, high frequency updates to fine grained record data (say, for recording 
 purchases). These are but a few of the possibilities. 

 Difficult engineering-oriented decisions must also be made to store data in the right locations to 
 minimize storage costs and latency of access, and – if needed– to ensure data availability when 
 there are storage, server, or network issues. 

 Beyond these engineering issues, there are also regulatory issues constraining decisions on 
 data storage. We discuss some of the privacy issues in  Section 10.1  , but many countries also 
 have data residency laws that confine data to being stored within a country’s borders. These 
 may well be at odds with efficiency, and they generate complex questions, for example, the 
 legality of short-term, out-of-country, data caching. 

 In addition to data, storage systems must also store  metadata,  or data about the data. In 
 particular, if an organization has multiple datasets, it needs to have a data catalog to make data 
 easy to find and available. An approach called  datasheets  has been proposed to standardize 
 metadata that describes what a dataset is and what it can be used for.  181 

 The data catalog itself contains, in essence, the organization's Data DNA, and thus is valuable 
 in itself, and requires security measures to prevent misuse or data theft. For example, in an 
 investment firm, even knowing the firm uses certain economic data would tip-off competitors. 

 One kind of metadata is  data provenance  , the data's  “chronological history of creation, 
 ownership, and chain of custody.”  182  Provenance is  helpful when there are questions about the 
 data: perhaps a model is performing poorly, and it turns out that due to a bug, the data collected 
 on a certain date is faulty. With proper provenance, that small slice of faulty data can be deleted 
 and the model updated. Without provenance all the data is tainted. Provenance is necessary 
 when dealing with legal requirements: there are many regulations regarding what 
 personally-identifiable information can be used for what purposes, so it is not enough to have 
 the data; organizations must track when and where the data originated, and what permissions 
 have been granted. In 2022 the Coalition for Content Provenance and Authenticity (C2PA) 
 released a technical specification for data provenance. 

 8.4 Data Quality 

 As we have mostly looked at engineering related data challenges, let us consider the problem of 
 non-erroneous, but still problematic data. With so much data, errors are likely to creep in. Data 
 may be incomplete. And, for all the effective wheat, there is also much chaff. Most simplistically, 
 the late 1950’s computing adage of “garbage in, garbage out” is true. While some big data 
 approaches tolerate very noisy data, most applications require data to meet certain criteria to 
 obtain good outcomes. Here are some specific data quality issues: 
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 ●  Data may have statistical bias. One key problem is  selection bias  , such as in survey 
 results. Those who bother to complete a survey are often unrepresentative of the whole 
 population. Records of crime frequency may be biased, because they track only reported 
 crimes, not all that are committed. We discuss many more biases in  Section 11.4.4  . 

 ●  It’s very challenging to combine similar data from multiple datasets, because data may 
 be coded with different underlying assumptions. For example, in multi-site medical 
 studies one might assume data is comparable, but hospitals in different regions may 
 measure or code data very differently. 

 ●  Big data techniques can hide underlying problems. For example, Tina Saey, a  Science 
 News  reporter, got interested in the microbiome and  had her gut bacteria analyzed. Her 
 February 2015 article described how she had two different companies analyze her 
 bacteria and got back different data.  183  At the time,  understanding the impact of gut 
 bacteria was of very high interest so her article was very illuminating. It showed research 
 models weren’t as inconsistent as they seemed. It was just when others tried to replicate 
 results, they were using differing and erroneous input data. 

 The impact of data quality is well illustrated in a controversy relating to Eran Bendavid et al.’s 
 Spring 2020 study to determine the percentage of people who had contracted COVID-19. As 
 reported in a  medRxiv preprint  184  the researchers  sampled Santa Clara County, California 
 residents, tested them for antibodies to the 2019-nCoV virus, and found that about 1.5% had 
 them. After adjusting for differing population demographics between the sampled and county 
 populations, they extrapolated that 2.8% of the population at large had those antibodies. They 
 further adjusted their estimate upward taking into account test sensitivity, and they arrived at a 
 seroprevalence rate about ~50 times larger than what was then known and, hence, a much 
 lower infection fatality rate. 

 However, their result led to considerable controversy. This was, in part, because the antibody 
 tests could report up to about 1.5% false positives, leading to doubts that the conclusions were 
 sufficiently certain. The Bendavid study may also have had challenges adjusting for selection 
 bias. The Andrew Gelman Blog had months of back and forth discussion, with Gelman’s 
 thoughts summarized in an article in the Journal of the Royal Statistical Society (UK).  185 

 Regardless of the correct conclusion, this example illustrates the challenges in sampling and 
 properly framing the results to accommodate the available data. Whole books have been written 
 on  sampling  186  and the broader topic of  experimental  design  ,  15,187,188  a topic to which will return in 
 Section 11.2.1  . We note in closing that Bendavid et  al. eventually published a similar, but 
 revised, version of their initial work.  189 

 One final concern is that learning from today's available data may create a kind of inertia based 
 on today's actions and norms, even if they are not what we ultimately want to persist. We 
 observe, metaphorically, that  learning from the present  may imprison the future. 
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 In 2015, Amit Datta et al. wrote one of the first articles about this. They showed that automated 
 advertising systems might automatically place ads in periodicals aimed at a certain 
 subpopulation, thereby denying some opportunities to another population.  190  They specifically 
 noted that click rates on certain ads might normally be higher for one gender than another. It 
 would then be natural for ad selection algorithms to use this information to bias ad presentation 
 on properties more likely to interest that gender. If those ads were for higher-paying jobs, a data 
 science approach to ad recommendations could unintentionally perpetuate an existing societal 
 tendency. This article was influential and helped influence data science to increase its focus on 
 fairness, which we discuss in  Section 12.3  . 

 8.5 Appropriate Use of User-Generated data 

 We feel we cannot end this chapter on data without a brief discussion of privacy. We presage 
 some of the topics of  Section 10.1  with a list of  thought-provoking engineering and policy 
 challenges that many applications need to answer: 

 1.  How can we reliably ensure privacy throughout the data acquisition, storage, and use 
 lifecycle? 

 2.  What mechanisms would allow users to know what data is stored, control with whom 
 their data is shared, retrieve their data, and retract rights to it? 

 3.  Under what conditions may data science applications use an individual’s data in 
 confidentiality-preserving ways? 

 4.  If a user retracts data access rights from a service, what happens to its anonymized 
 aggregate summaries based in part on that user’s data? 

 5.  What is the balance between individual rights and confidentiality-preserving use of data 
 for scientific, civic, law enforcement, national security, or commercial uses? 

 6.  How do applications and users balance the value that accrues from user data? 

 While much of data science today is concerned with machine learning, application design, and 
 all manner of policy issues, this section has illustrated classic and new data management issues 
 associated with the data itself. Whether engineering, normalization, careful statistical analysis, 
 or paying due attention to data sensitivity,  engineering  the data pipeline is often the most 
 time-consuming and labor-intensive  part of new data  science applications. 
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 Chapter 9. Building and Deploying Models 

 Machine learning models have proven to be effective at solving a wide variety of real-world 
 problems. But it can be difficult to develop and maintain these models. By their nature, they are 
 not 100% effective, and producing a good model is an art. This section describes some of the 
 issues. 

 9.1 Theoretical Limitations 

 One week into a new job, co-author Alfred was using gesture-typing to let his then brand-new 
 assistant know he would call later “when I’m  in  the  car  .” The text produced, which was “I'll call 
 you when I'm  on  the  can  F  ,” was embarrassing. Also, his automatic message transcription 13

 system once mistakenly interpreted an extraneous sound as a “5,” leading to this confusing 
 transcription: “My number is area code (626) 523-8023. Once again that number is (  5  62) 
 652-3802  free  .” 

 Traditional software engineers have a methodology for eliminating bugs in systems that deal 
 with clear-cut correct answers. But in applications like speech recognition, the problem is that 
 there is inherent  uncertainty  . For some inputs, even  the best experts disagree on what the right 
 answer is, so any model will necessarily disagree with some expert answers at least some of 
 the time. The challenge is to build an overall usable and robust application, even though it may 
 make occasional errors.  Part II  illustrates that error  tolerant applications are much more likely to 
 be amenable to machine learning solutions, and  Chapter  13  discusses the challenges of dealing 
 with uncertainty. 

 A second problem is that the world changes. A system trained on yesterday’s data may no 
 longer perform well tomorrow. Technically, we say most machine learning systems assume that 
 the data-generating process remains  stationary  , meaning  the relationship between inputs and 
 outputs remains constant over time–or at least close to constant. There are places where this 
 works well: 

 1.  Cats evolve slowly enough that an image recognizer trained on existing cat images still 
 works well on new cat images–even for cats yet to be born! “A cat is a cat is a cat.” 

 2.  A listener who likes hip hop music is unlikely to suddenly switch their preference to 
 classical, nor will the classical listener suddenly switch to country. 

 However, there are many applications where the world does change. This is a problem, 
 because a machine learning model trained on past data only continues to work if the future data 
 resembles the past. When there is any change in the distribution of data over time, we say the 

 13  For any reader not knowing the meaning of this circa 1900 idiom, suffice it to say it was embarrassing. 
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 process is  non-stationary.  When that non-stationarity has an effect on the variable we are 
 trying to predict, we call it  concept drift  .  There  are several kinds of change to look out for: 

 ●  Sudden change:  In finance, the past is often a great predictor of the future… until 
 something significant changes – such as an economic panic. The finance world calls this 
 a  regime change  . After the regime change, the old  models no longer work. Many stock 
 market models became less predictive at the onset of COVID-19 because the rapid 
 onset of the pandemic changed consumer and investor behavior in previously unseen 
 ways. As another example, a highway accident will instantly break all the predicted 
 arrival times of a traffic-routing application. 

 ●  Periodic change:  Purchase patterns exhibit seasonality  – people buy mittens in winter 
 and swimsuits in summer – and a model that does not include the time of year as an 
 input will exhibit concept drift. Other patterns occur with weekly and daily periods. 

 ●  Gradual change:  An online retailer may find that a  certain fashion is a top seller. 
 However, over time its popularity begins to fade and a new favorite emerges. 
 Recommendation systems need to keep up with these changes, balancing how much 
 they rely on past data with how much they should concentrate on the present. 

 ●  Adversarial change:  In game theory, we know that one  player's actions will change 
 other players' actions. Applications such as email spam filtering are game-theoretic in 
 this sense. A company can build a near-perfect spam filter, but as soon as spammers 
 notice that their mail is not getting through, they invent new, previously unseen patterns 
 of spam mail. 

 ●  Sampling change  :  It may be that events in the world  have not changed, but the data 
 that is collected has. For example, customers might still be buying the same things, but a 
 new rule for opting-in to cookie tracking may change the slice of data that is collected. 
 As another example, in 2000 Google expanded the range of books included in their 
 Books Ngram Viewer. This made the tool more useful for the average consumer, but 
 harder for scientific researchers to compare results before and after 2000. This would be 
 an example of non-stationarity without concept drift. 

 It is vital to continuously monitor a deployed system to watch out for any unexpected changes, 
 and to correct for them by updating the model. 

 A third problem is that it can be difficult to specify exactly what we want a machine learning 
 system to do –  what we want to optimize  . Yes, we want  a speech recognition system to 
 minimize the words that it gets wrong. But that’s not quite the right metric, because the 
 embarrassing mistake that happened to Alfred should receive a larger penalty than an 
 innocuous mistake. It is easy to measure the word error rate, but hard to measure the 
 embarrassment of serious mistakes, and thus hard to minimize them. 

 One place this shows up is in search engines. While it is important to provide great results in the 
 top positions, it is even more important to avoid a terrible result there. One bad result might lead 
 to a news article seen by millions of readers, hurting the search engine’s reputation. Therefore, 
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 search engine teams must understand the full distribution of answers, not just the average 
 number of good results. 

 In finance, optimizing a portfolio's return is a great goal. Investors also like bounds on how much 
 the value of their portfolio will vary so they can sleep at night. Risk-adjusted returns are a critical 
 financial concept,  191  so machine learning approaches  must include a careful analysis and 
 mitigation of risk.  Chapter 12  will return to this  problem of setting the right objective. 

 Machine learning is a fast-moving field, and new models can emerge faster than our 
 understanding of them. In particular, we don’t yet have a full understanding of where and when 
 deep learning systems will work well. In general, we know deep learning networks can 
 approximate any computable function well, but we don’t know for sure what the right network 
 architecture is for a particular problem. We have techniques to search through the space of 
 possible networks but no guarantees about how long it will take. We also know that searching 
 through parameter space is only guaranteed to find a locally-optimal solution, not a 
 globally-optimal one. Fortunately, for many problems, most locally-optimal points are almost as 
 good as the globally-optimal ones. 

 As a related problem, not understanding how some machine learning systems work makes it 
 difficult to augment them with other semantic knowledge. How does a system developer of a 
 complex neural network instruct it with additional common-sense knowledge? For example, we 
 might want to tell it, "you labeled this photo a wolf, but it is actually a Siberian Husky dog; 
 wolves are typically larger than this" or "don't recommend pork to someone observant of Kosher 
 food rules." 

 Many of these theoretical challenges have been fundamental to statistics. As data science 
 expands to high stakes fields like biomedicine, health policy, and epidemiology, statistics needs 
 to keep up with the ELSI challenges around privacy and fairness. Statistics is also focusing  on 
 the  mathematical challenges of understanding and creating  the high-performance algorithms 
 appropriate to massive datasets and inferencing that can be done on multiple distributed 
 machines. Statisticians are expanding mathematical analyses not only to study error as a 
 function of the number of observations but also as a function of the number of processors or 
 computational operations. 

 Finally, statistics also contributes important techniques that can aid us in ascertaining causality. 
 Causality is important for scientific understanding and to answer both forward-looking “what if'' 
 questions and historical counterfactual questions. However, creating models that show causality 
 is very challenging, as strong correlation  may  indicate  a causal relationship but most certainly 
 does not offer proof. We will continue this discussion in much greater detail in  Section 11.2  . A 
 2019 NSF Report entitled  Statistics at a Crossroads  ,  representing the views of a number of 
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 well-known statisticians, contains an additional, compatible viewpoint on the challenges of 
 statistics.  17 

 9.2 Inductive Bias 

 There is a myth that machine learning is completely objective–the data determines the results, 
 with no human intervention. That is a myth in part because the process of collecting the data 
 involves subjective choices by humans (as covered in  Chapter 8  ), and also because the training 
 data, no matter how plentiful, only covers a finite number of inputs. A learning algorithm can 
 memorize  the examples it was trained on, but when  given an input it has never seen before, it 
 must  generalize  . Some assumptions must be made to  guide this generalization; this is the 
 inductive bias  . 

 It is important to note the distinction between  social  bias  and inductive bias. Social bias is the 
 unfair treatment of one class of individuals, an unfortunate effect that we need to eliminate (as 
 covered in  Section 12.3  ). Inductive bias is a necessary  part of any learning, machine or human. 

 Consider the top row of  Figure 9.1  below. The same  training set of 15 data points is shown in 
 each of the four boxes. Each box also shows a line representing a different model that is fit to 
 the data. These four models are: 

 ●  A linear model  showing the straight line that comes  closest to all the data points. 
 ●  A nearest-neighbor model  in which each new point is  assigned the value of the closest 

 point in the training set. 
 ●  A cyclic model  that combines an overall linear trend  with cyclic variation. 
 ●  A polynomial model  of degree 13 which fits the data  almost perfectly. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  116 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 Figure 9.1 Fitting models to training data (synthetic data generated by the authors) 

 Which model is best (out of the four shown, or any other)? The answer to that question is not 
 contained only in the data points themselves; it is also in what we know about the data. The 
 linear model is a good choice if, say, each data point represents the mass and volume of a 
 chunk of the same metal. The slope of the line would then be the density, which all chunks have 
 in common. The nearest-neighbor model makes sense when we have a lot of data but little 
 knowledge about it, except that we expect similar inputs to have similar outputs. The cyclic 
 model is appropriate for traffic data to a website that is steadily becoming more popular, but 
 suffers a lull every weekend. 

 The polynomial model appears to suffer from a problem called  overfitting  . We can see that by 
 comparing the two rows of the figure, which represent two different training sets, each sampled 
 from the same distribution of data points. The linear model looks the same with both training 
 sets, but the polynomial model is quite different, with large spikes in different positions. The 
 model has high  variance  ; a small change to the training  data makes a big change to the model. 
 That means the model is unreliable. In this case, the root problem is that the polynomial has too 
 many parameters, which allows it to fit the input’s noise instead of the real underlying pattern. 

 To deal with overfitting, we can use a simpler model with fewer parameters. Or we can constrain 
 the parameters to have values that are smaller in absolute value so that the function is 
 smoother, without the large spikes.  Regularization  is a procedure that enforces this; we 
 evaluate a model's goodness not just by how well it fits the training data, but also by how 
 “simple” the model is. A version called  L  2  regularization  works well for polynomials. 

 Ensemble models  , in which the predictions of several  component models are combined, are 
 another effective way to avoid overfitting. The ensemble technique called  bagging  trains 
 multiple complex models on different training sets. The randomness in the training tends to 
 smooth out the spikiness in individual models. 

 The linear model appears to be  underfitting  the data.  The model captures the overall increase 
 as we go from left to right, but a straight line is incapable of capturing any variation from that 
 (whereas the cyclic model is capable). We need to loosen the overly-strict inductive bias by 
 allowing a less-constrained model (such as the cyclic model). In some cases, but not here, 
 reducing the amount of regularization also counters underfitting. 

 The ensemble technique called  boosting  overcomes underfitting  by training a sequence of 
 simple models. Each model is focused on correcting the mistakes made by the previous model. 

 As another example, if a model makes the overly-strict assumption that the input comes from a 
 normal distribution, it has difficulty handling data where outliers occur more frequently, as Taleb 
 states in  The Black Swan  .  192  Real-world distributions  are often quite different from 
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 mathematically tractable ones. Furthermore, some systems are just chaotic, such that a rare 
 event can throw off the best of analyses. Regrettably, COVID-19 has been one of these rare 
 events. 

 There are many ways to impose an inductive bias. Computer vision systems are built with an 
 inductive bias for translational invariance–seeing a cat in one position of the image should 
 generalize to seeing the same cat moved over a few pixels. Convolutional neural networks 
 enforce this bias, because they treat every part of the image in the same way, at least in the 
 initial processing. 

 In genomics, biologists believe that only a small number of genes are involved with each 
 disorder or trait. Good genomics models should learn to pick out only the few important genes. 
 The technique of  L  1  regularization  forces many parameters  to become zero, thus imposing the 
 inductive bias for selecting just the right genes and ignoring others. 

 Statisticians distinguish between models based on the number of parameters in a model. In a 
 parametric model  there are a fixed number of parameters  such as the three parameters  a, b, 
 and  c  in the equation  y  =  ax  2  +  bx  +  c  + 𝜖, where  𝜖 represents random noise  .  A learning 
 algorithm applied to (  x, y  ) data points can quickly  find the best fit for these parameters, requiring 
 only a small amount of data. A parametric model imposes a strong inductive bias that is 
 appropriate when some known theory suggests the right equation to use. For example, if the 
 data points describe locations of a ball in flight, we have a physical theory of gravity that tells us 
 the path will be a parabola (absent air resistance). 

 In a  nonparametric model  the number of parameters  is not fixed, and can grow without limit as 
 more data is added. For example, the nearest neighbor model retains every data point as part of 
 the model. Nonparametric models have less inductive bias–make fewer assumptions–and let 
 the data speak for itself. So they could learn to describe the non-parabolic flight of a ball that 
 was influenced by air resistance and wind. But they typically require more data to learn well, 
 because there are fewer limits on what the model can be. Popular nonparametric models 
 include neural networks, decision trees, and nearest-neighbor models. 

 The choice of model class is the most important choice to be made, but there are also choices 
 in how to search through the model class to find the best model instance. Techniques like 
 regularization, dropout, early stopping, weight sharing, and pruning can be used to guide the 
 search to a model that nicely balances bias and variance. 

 This section has tried to show that a data scientist has to use good judgment to arrive at a 
 model that is appropriate to the problem at hand. In all but the most trivial problems, the model 
 will be an abstraction of reality that leaves something out. The data scientist’s task is to find 
 models that don’t leave out anything important. As the statistician George Box said, “All models 
 are wrong, but some are useful.”  193 
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 9.3 Practical Considerations 

 There are practical concerns in keeping a machine learning application up and running properly. 
 We have mentioned the data challenges, but the large scale of some systems may pose 
 additional challenges: 

 ●  Data acquisition (when it is arriving at, say, 100,000 items per second), 
 ●  Data storage (of petabytes or exabytes), 
 ●  Data processing (of trillions of floating point operations per second, or “teraflops”), 
 ●  Power consumption (of 100 megawatts for a large data center), 
 ●  Personnel (many skilled people needed to design, build, and operate the system), 
 ●  Privacy, regulator system integrity, and availability requirements add to the engineering 

 complexity of big data systems. 

 Since the dawn of the computer age, Moore's Law (the ability to reduce the size of transistors 
 geometrically and thus increase computing power) has let us overcome scale issues if 
 implementers could just wait for the development of a new generation or two of systems. 
 However, while we will still shrink transistors for quite a while and cram more onto a single chip, 
 it’s harder and harder to make the transistors switch faster and to make easy improvements in 
 cost-effectiveness. 

 However, computer architects at Apple, NVidia, Google, Intel, and elsewhere are coming to the 
 rescue with specialized computer architectures aimed at machine learning problems. Google 
 built its Tensor Processing Unit (TPU) Version 1 in response to a concern that “people searching 
 by voice for three minutes a day using speech recognition DNNs (deep neural networks) would 
 double our datacenters’ computation demands.”  194 

 Operations research has a history of dealing with large-scale problems. Its practitioners now 
 see increasing challenges arising from new applications, increased scale in data and 
 computation, and the combination of their field's traditional approaches and newer data-driven 
 ones.  195,196  The expansion of applications to problems  in healthcare, the smart grid, and other 
 areas generate not only scale, but also the need for real-time answers, increased resilience, 
 and reduced uncertainty. 

 An example large-scale problem is the World TSP (Traveling Salesperson Problem), in which 
 the goal is to find the shortest route that visits each of 1,904,711 cities around the world.  197  As 
 we have observed in the route finding example of  Section  6.1  , navigation systems combine 
 multiple approaches to produce their results. However, the general topic of how best to combine 
 models that use both operations research techniques and machine learning is a great 
 challenge. 
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 Of course, not every data science problem is at the petabyte/petaflop scale. Small companies 
 and academic labs run smaller machine learning experiments using GPU clusters or rented data 
 center time. Some applications run on “edge” devices where the data is gathered, either for 
 privacy reasons or because it is inefficient or difficult to transfer the data. These applications, 
 though typically smaller in scale, are still complex to manage and run. Their challenges relate to 
 minimizing expenses, reducing data scientist overhead, managing experimentation, and more. 

 Some machine-learning applications are deployed as stand-alone systems that make 
 autonomous decisions (such as recommending a video to view). But other systems are just part 
 of a decision-making team, such as a computer vision system that analyzes x-ray images and 
 makes a diagnosis that human doctors then take into account in creating a treatment plan. In 
 such systems it is important to optimize the overall decision-making quality, not just the 
 accuracy of the machine-learning system’s recommendations. Chapter 11 examines how to 
 make machine-learning systems interpretable and explainable, so that human experts can best 
 use their advice. Kleinberg and colleagues examine how to integrate a machine-learning system 
 into a decision-making framework,  171  and others have  added to this line of work.  198 
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 Chapter 10. Dependability 

 To be accepted by society, data science applications must perform properly for a wide variety of 
 users in a wide variety of circumstances, with few, if any, critical errors. For example, 
 demonstrations of self-driving cars in controlled circumstances have impressed many. However, 
 they are not yet widely deployed because they do not work well in all circumstances. 

 Making systems dependable may take more time and effort than collecting and analyzing their 
 data. This is particularly true for consumer-facing websites, mission critical applications, and 
 almost all healthcare and financial applications. In this section we address the four aspects of 
 dependability:  privacy  ,  security  ,  resistance to abuse  ,  and  resilience  . 

 10.1 Privacy 

 Most people feel that their personal data–such as medical records, school grades, and browsing 
 history–is private and maintaining their privacy is important. However, the topic of privacy is 
 more complex than just maintaining confidentiality, and we distinguish five areas of concern that 
 people have about their personal data: 

 1.)  Collection:  What data should an organization be allowed  to collect about me, either by 
 asking me questions, recording my online actions, or using sensors such as GPS, 
 cameras, and health monitors? What consent do they need to ask me for, and what do 
 they have to tell me about what they are collecting? Which organizations do I trust? 

 2.)  Storage:  Where, how, and for how long should they  be allowed to store my data? What 
 guarantees do I have that the data will not leak? 

 3.)  Confidentiality  : My data should not be shared with  others without my permission. But I 
 will want to share social media with my family and friends, medical records with my 
 doctors, and financial records with my trusted advisors. Can I count on my applications 
 to protect my data? Will I be able to change my sharing preferences when I want to? 

 4.)  Usage for self  :  How can the organization use my data  to benefit me? I may appreciate it 
 when I get a localized restaurant recommendation or an accurate personalized spelling 
 correction, but I may find it creepy, manipulative, or annoying to get products 
 recommended to me when I am not interested. Do I have control over how my data is 
 used for these purposes? 

 5.)  Usage for others  : Data can be anonymized and aggregated  so that it creates value for 
 many people without breaching confidentiality. For example, many small inputs from 
 different users combine to create a better spelling correction system for everyone. 
 Combined anonymized medical records from many patients lead to a new and improved 
 treatment. Many simple “yes” or “no” census answers provide an accurate picture of 
 society. On the one hand, most people participate in this kind of data sharing because 
 the result is beneficial to all. On the other hand, users may be concerned if they feel their 
 data is contributing to a societal ill, they are not fairly compensated for its value, or that 
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 their confidentiality might be breached. How can I know if allowing this use of my data 
 will truly be beneficial to others and not be harmful to me? 

 Over the years philosophers, political scientists, and legal experts have contributed to privacy 
 debates. Consequently, privacy is a very rich domain, but this book considers it somewhat 
 narrowly: from the perspective of data science applications, companies offering them, 
 individuals who use them, and governments that may regulate them. 

 The rules governing privacy may arise either from a formal or informal contract between the 
 user and the provider of a data science application, by societal regulation, or both. Helen 
 Nissenbaum, in her theory of privacy called  contextual  integrity  , argues that we have 
 expectations of what constitutes an appropriate flow of information. Anything outside of those 
 expectations constitutes a violation of privacy.  199  For example, we expect our priest or lawyer to 
 keep a conversation in confidence, but that a reporter or police officer need not do so. These 
 expectations evolve over time as technologies and cultural expectations change. 

 Privacy can no longer be an afterthought. It is a key and complex part of product design. For 
 example, co-author Alfred had a project at Google that required over a year of analysis to be 
 sure it was free from privacy risks and hence launchable. All institutions that handle sensitive 
 data need to have policies for assessing and mitigating privacy risks. 

 10.1.1 Privacy versus Usage Rights 

 Data may be collected from a user explicitly (e.g., when the user answers a questionnaire, 
 contributes a medical specimen, or fills out a form) or implicitly (e.g., from clicking on a link, from 
 the location of the user’s mouse on a screen,  200  or  the GPS location of a phone.) In the specific 
 context, what rights do the user and the collector have with respect to this data? 

 Regulatory frameworks such as the European Union’s General Data Protection Regulation of 
 2016 (GDPR) mandate that explicit user consent is required to gather certain types of 
 information.  201  In addition, there must be a disclosure  of the rationale for the collection and the 
 data's intended uses. The GDPR is more modern and influential than the US Federal Trade 
 Commission (FTC) Fair Information Practice Principles (FIPP) of 1998,  202  although they have 
 considerable overlap. 

 These regulatory frameworks specifically call out  personally identifiable information  (  PII  ). 
 Clearly, a user’s name, home address, and social security number are PII. But for some 
 information, there is less clarity and standards are diverging across political boundaries. For 
 example, a user's internet address is considered PII in Europe, but not in the US. Some 
 particularly sensitive information (  SPII  ) may have  even greater protections since its compromise 
 would “result in substantial harm, embarrassment, inconvenience, or unfairness to an 
 individual.”  203 
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 The scope of regulatory and contractual privacy requirements increasingly covers not only the 
 direct disclosure of personal information, but also other ways in which personal data may 
 become available. For example, regulations seek to prevent the disclosure of aggregated data if 
 statistical analyses can be used to infer personal information. 

 Privacy goals can conflict with using data to benefit individuals and society. The 1996 US Health 
 Insurance Portability and Accountability Act (HIPAA) tries to balance the privacy and the value 
 of data by assuring “that individuals’ health information is properly protected while allowing the 
 flow of health information needed to provide and promote high quality healthcare.”  204  However, 
 many researchers say HIPAA slows progress by making it harder to do some types of medical 
 research. For example, if researchers get permission to use x-ray images to test one 
 hypothesis, they may need to return to the subjects and ask permission again to use the images 
 on a variant. Even the privacy-focused GDPR acknowledges the need for balance: 

 The processing of personal data should be designed to serve mankind. The right to the 
 protection of personal data is not an absolute right; it must be considered in relation to its 
 function in society and be balanced against other fundamental rights, in accordance with 
 the principle of proportionality.  201 

 Patients want control over their own health information, but are often willing to share when it 
 benefits themselves and others. The popular website  PatientsLikeMe.com  lets patients with rare 
 conditions discuss their case and find possible treatments. 

 While GDPR is relatively clear on how it regulates PII data, its rules about using anonymized 
 aggregated data are complex and subject to interpretation.  205  That leads to nuanced challenges 
 about implicit data gathering that often occurs when someone uses a computer application. 
 User actions generate data that could be very valuable in making better recommendations, 
 either privately for that user, or aggregated and anonymized and shared across users. However, 
 regulators and users may have concerns even when data is anonymized. 

 To date, major websites have adopted a pragmatic approach to privacy. They have taken into 
 account their own goals and technological capabilities, along with changing consumer views 
 and governmental requirements. While they continue to depend on aggregated data and 
 recommendations to make their systems work and provide profit, as of 2022 they have been 
 offering users more protection and control over their data. Some sites have long allowed users 
 to download or delete their data. Extending these capabilities, Google in 2011 launched Google 
 Takeout with which users could download and/or delete the breadth of their Google data.  206 

 Facebook,  207  Apple,  208  Twitter, Microsoft, and other  companies now provide similar services, 
 especially after 2018 when they were mandated by GDPR’s Article 20, Right to Data Portability 
 and the Data Transfer Project was founded.  209  These  facilities are meant to prevent users from 
 being locked in to one vendor. However they also constitute their own security risk. If an 
 attacker gets access to an account, a single request downloads all the data to the attacker. 
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 Some question whether companies should pay users for their data. However, Tim O’Reilly 
 argues in the article  Data is the New Sand  that data  should not be thought of as a valuable 
 commodity (like oil), but as a plentiful, cheap, common resource (like sand).  F  ,210  The numbers 14

 back up his argument. For example, in 2019 Facebook had costs and expenses per user (for 
 data centers, salaries, etc.) of about $19, taxes of $2.50, revenue of $29, and profit of $7.50. 
 Some of the value is no doubt due to data that users generate with their clicks and other 
 feedback. One could ask whether each user should receive a portion of the $7.50 profit, or if 
 they are already getting enough compensation from the free service? In hypothetical auction 
 experiments, users self-report that they value the use of Facebook at over $1,000 per year, 
 suggesting that they are already getting a favorable deal.  211 

 Other websites are also highly valued. In experiments by Erik Brynjolfsson and colleagues, 
 users say that they value internet maps at $3,000/year, email at $8,000/year, and search 
 engines at $17,000/year.  212  Even if these self-reported  amounts are exaggerated, much lower 
 ones would still serve to highlight the value of these free (advertising-supported) services. 
 Nonetheless, some companies' high valuations create a perception they should share their 
 wealth with consumers. 

 The medical ethics community has considered what compensation human subjects should 
 receive for clinical trial participation.  213  On the  one hand, medical scientists would like to offer 
 compensation to subjects exposed to the risk of discomfort. On the other hand, compensation 
 may induce poor and otherwise vulnerable populations to take increased risks. 

 One well-known case is Henrietta Lacks, who was treated for cancer in 1951.  214  It was found 
 that her cancer cells would live and continually reproduce in the lab while previous cell 
 specimens had died within days. Her cell line was cultured and medical scientists used it to 
 make dozens of scientific discoveries.  215  The case  reflects poorly on the era’s lax medical ethics: 
 She was not asked for consent to use her cells, and her cells were labeled as “HeLa” cells, a 
 privacy violation that led to her name becoming known. Of less clarity is the fact that she and 
 her estate received no compensation. Her cells certainly had great scientific value, but many 
 scientists would argue it was years of hard work and advances by many others that created the 
 breakthroughs. 

 In addition to personally identifiable information, there are regulations to protect commercial 
 intellectual property (IP)  . Consider a cloud storage  vendor that stores clients' intellectual 
 property. Typically, a contract specifies penalties if the vendor exposed this sensitive IP. (See 
 the liability discussions in  Section 13.2  .) However,  the vendor might want to negotiate for some 
 rights to the data: 

 14  Two additional reasons why “Data is the new oil” is a bad analogy: 1) Oil is consumed when it is used, 
 whereas data can be reused, replicated, and shared. 2) Oil is fungible. Oil from Texas or Saudi Arabia or 
 Russia is all traded in one global market and can be used anywhere while most data is highly specific to 
 localized use. 
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 ●  The right to monitor the storage growth rate and to use that data to predict future 
 demand and have sufficient resources ready to go. The cloud vendor would argue this is 
 mutually beneficial. 

 ●  The right to share or sell  aggregate storage growth statistics. This could be valuable to 
 disk drive manufacturers and investors in the industry. There is minimal risk to the client 
 in sharing it, since it only reveals how many terabytes were consumed. 

 ●  The right to seek value from the IP itself, either by reselling it (sharing profits with the 
 client) or making it public. Sites such as GitHub operate under this model. They host for 
 free an unlimited amount of source code as long as that code is publicly viewable. This 
 makes the site more attractive to other customers. There is a storage fee for customers 
 who want their code to be private. 

 ●  The right to train a machine learning model using the data. Continuing the GitHub 
 example, the company’s Copilot tool, which autocompletes computer code based on a 
 GPT-3 deep learning model, is trained at least in part on publicly-accessible GitHub 
 repositories. Gmail’s Smart Compose and Smart Reply are similarly trained on a large 
 body of email, though their outputs are carefully restricted to prevent leakage of either 
 privacy-sensitive or otherwise valuable data.  216  Both  GitHub and Google Cloud 
 customers can request that their data not be used for training purposes. 

 10.1.2 Balancing Corporate, Individual, and Government Concerns 

 Corporations offering data science applications, their customers and users, and their 
 governments may clash over several matters. 

 Governments have decided they have a role in providing privacy protections, and that 
 individuals should not navigate these difficult issues on their own. The GDPR and other 
 frameworks mandate rules relating to data collection, storage, deletion, disclosure, and more. 

 Societal interests may derive from believing privacy is a universal right that must be protected. 
 For example, in April 2021 the European Commission proposed draft regulations that would 
 restrict biometric identification, such as facial recognition, in public spaces by private 
 companies. In reaction to growing societal concerns and the unclear regulatory environment, 
 Facebook decided to shut down their use of facial recognition in November 2021. 

 Governments may also want to protect residents who cannot make informed decisions. This 
 includes those who might be coerced into providing permissions they regret. Also, society may 
 feel that some collective uses of data should be controlled no matter what individuals may 
 desire. Clearview AI’s facial recognition product, which has been trained on billions of publicly 
 available images on the web, illustrates the impact of large scale data aggregation’s uses and 
 concerns.  217  This is a complex topic addressed more  in  Chapter 12  and  Chapter 14  . 
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 Many regulations focus on data retention. Regulations may mandate that no personally 
 identifiable data should be stored for longer than a certain period, and prescribe penalties for 
 data disclosure. The risk of penalties has a powerful effect on companies. For example, in 2008 
 when Google announced the first Google Health product, the penalties for health record 
 disclosure were steep enough to catalyze a pre-launch privacy and security audit. This led to a 
 re-implementation of the underlying data storage system to encrypt all patient data both at rest 
 and in transit to greatly reduce the risk of data leaks. Some countries mandate that certain types 
 of data be stored only in-country, so that it is subject to their legal apparatus. EU countries and 
 US companies are engaged in considerable give and take on this. 

 In some cases, governments seek to violate individual privacy for society's greater good. Law 
 enforcement wants access to phone/email communication records and location data for criminal 
 suspects, to decrypt suspect’s encrypted data, and perhaps gather biometric identification data. 
 Even the most liberal western governments argue that search warrants can apply to private 
 data. The US Constitution’s Fourth Amendment limits searches to those that have “probable 
 cause” and that are “particularly describing the place to be searched.” There is active debate 
 over exactly how those standards apply to private computer data. These debates reached a 
 crescendo in 2015 on the topics of US NSA or FBI metadata collection (endpoint information on 
 phone calls or chats) and the pros and cons of robust, on-device encryption of user data on 
 iPhones, versus agency access through a backdoor. 

 Also, telephone companies like AT&T also receive many requests for data, as do the large 
 internet technical companies.  218–220  In the first  half of 2020, for example, Microsoft and Google 
 reported they received requests by governments for data on 50,000 and 250,000 accounts, 
 respectively. Roughly 30%-40% of the Microsoft and Google requests came from United States 
 governmental entities, mostly local law enforcement. About a quarter of these requests were 
 geofence warrants  , which ask for the identity of any  users whose phone indicates they were 
 near a crime scene when it occurred. There is debate over whether such searches are 
 unconstitutionally broad, but law enforcement use of them increased rapidly from 2018 to 2021. 

 Companies  offering data science applications must  navigate complex waters, given the 
 conflicting desires of user communities, the often unclear and changing governmental regulatory 
 regimes, and the contradictions between government regulations in the multiple locations a 
 company operates.  It seems reasonable to expect a  continually changing landscape of laws and 
 regulations as governments try to keep up with changing norms, while data science practices both 
 catalyze and adapt to change. See  Section 14.1  for  more. 

 Some of the most challenging trade-offs relate to how much data to collect and retain. Data 
 science's earliest practitioners reasoned that collecting and storing data was purely an asset. 
 Therefore, storing lots of raw data provided the utmost flexibility for any future data science 
 applications–“if some data is good, more is better!” 
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 As an example, it might not seem necessary to log and retain every transaction's exact time and 
 internet address. But, a comparison of present and historical activity patterns can uncover 
 suspicious activity (a cyber-attack, credit card fraud, or other abuse), either forensically or in real 
 time. 

 As another example, Google used search log data for its Flu Trends application, which was 
 available for about 5 years. Based on crowd-sourced search term frequencies, it reported the 
 severity of flu outbreaks with initially promising but ultimately disappointing accuracy.  221,222  See 
 Chapter 11  for more details. Similarly, Microsoft  used Bing search logs to detect previously 
 unknown adverse drug reactions.  223  As mentioned in  Section 6.3  , Google used its history of 
 individuals’ location data to chart societal movement trends over time. 

 Despite the benefits of retaining all available data for possible future use, there is a growing 
 recognition that data can also be a liability. GDPR Article 5 expresses a  principle of data 
 minimization  : “Personal data shall be … limited to  what is necessary in relation to the purposes 
 for which they are processed.”  201  Many privacy advocates  believe a system should discard data 
 unless it is already known to be necessary, as a system cannot leak what it does not have. In 
 many cases, compliance with privacy standards will mean that data collected for one purpose 
 cannot be used for a different one. Data science implementers have come to realize that there 
 are costs to holding onto more data – bookkeeping costs in recording and tracking its 
 provenance and the potential for fines, lawsuits, and reputation loss if data is mishandled. 

 While most data leaks occur because of security failures, as discussed in  Section 10.2  , limiting 
 disclosure of confidential information is subtle due to many policy issues. As examples, how do 
 individuals easily and safely authorize or revoke a system’s right to share their personal 
 information with others? How fine-grained are the authorizations and how long should they last? 
 Consumer advocates want users to have fine-grained control over their data. However, 
 consumers don’t want to be bombarded with too many questions. 

 If a user forgets their password, how should one balance the ease of recovering account access 
 against an attacker's ease in gaining unauthorized access? Should individuals be informed if the 
 government demands access to their private data? Interestingly, this last answer is partially 
 government limited, as certain information requests, at least in the US, are themselves 
 confidential. (See the previous footnote on national security.) 

 Companies need prudent and clear policies around maintaining confidentiality. In 2012, Target 
 was criticized for using customers' purchase histories to predict likely pregnancies.  224  Target 
 made two mistakes. First, they mailed pregnancy-related marketing materials in packages that 
 revealed the potential pregnancy to anyone who glanced at the package, violating the “for Self” 
 restriction. Second, many customers found these recommendations creepy (“How did Target 
 know?”). Finding the line between creepy and acceptable is complex; it probably would have 
 been fine to mail a diaper ad post-birth. 
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 10.1.3 Technologies for Privacy 

 While privacy's social, legal, and policy issues are thorny, there are promising technologies that 
 address specific privacy concerns. We will cover seven: 

 ●  Access control  determines who can see data. 
 ●  Encryption  obscures data even when it can be accessed. 
 ●  Differential privacy  provides guaranteed limits to  what can be learned about any 

 individual in a dataset by carefully adding noise. 
 ●  Federated learning  lets each user keep their data  on their own device, but for all users 

 to share what machine learning derives from that data. 
 ●  Secure multi-party computation  provides cryptographic  guarantees of privacy. 
 ●  Secure enclaves  provide hardware-based guarantees. 
 ●  Homomorphic encryption  allows queries against an encrypted  dataset. 

 In online data's early days, privacy was not a priority, and privacy protections were certainly 
 insufficient. In a practice called  de-identification  ,  personally identifiable information such as 
 names, Social Security numbers, and street addresses were removed from datasets, with the 
 expectation that the datasets could then be released for research purposes without risk. 

 In 2002, Latanya Sweeney demonstrated that this was insufficient. If the mentioned fields are 
 removed but birth date, gender, and zip code remain, then 87% of the US population could be 
 re-identified. Sweeney identified then-Massachusetts Governor William Weld's hospital 
 admission data by conjoining state medical records and motor vehicle records.  225  As we 
 mentioned in our analysis of recommendations in  Section  5.3  , in 2007 Netflix was criticized 
 when they released an anonymized dataset of customer movie rankings. It turned out that 
 people who give a supposedly private Netflix movie rating sometimes gave a publicly-viewable 
 rating on IMDb at about the same time. Researchers used this to re-identify some of the Netflix 
 users.  226 

 Consider a utility company that wants to publish aggregated smart meter data, such as a 
 neighborhood's average household energy usage, but must ensure it doesn't reveal any 
 individual customer’s usage. If the only available information was a large neighborhood's single 
 average, there would be no problems. But when multiple queries are allowed, it quickly 
 becomes possible to compromise privacy. 

 For example, if someone makes the two queries, “average energy usage for homes in zip code 
 12345” and “average energy usage for homes in zip code 12345 using less than 200 million 
 BTUs per year,” and if from different data sources we know the number of homes in the zip code 
 and that customer  X  is the only one likely to be using  over 200 million BTUs, then customer  X  ’s 
 exact usage is exposed. Researchers have proven that there are only two ways to protect 
 against such attacks: Either don’t allow such queries, or limit the kind of queries and add 
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 carefully controlled  noise  to the results. In other words, don’t give the exact average, but rather 
 an approximate average.  227 

 Access Control 

 Access control  is a mechanism for limiting who can  see data. Each dataset has a list of the 
 only users allowed to access the data. Corporate employees should receive access to sensitive 
 data only after training on privacy-preserving procedures. The  principle of least privilege  says 
 they should have access only to what data they strictly need. Usually, access will be to 
 anonymized aggregated data products, not to the original raw data. 

 An employee with multiple roles should use the least-privileged role that gets the job done to 
 minimize risk of inadvertent errors. All access should be logged and audited, and for the most 
 sensitive operations multiple people should be required to simultaneously approve access, and 
 alerts should be sent whenever access occurs. That way a single rogue employee can’t break 
 privacy. Unfortunately, the continual overhead of fine-grained access control is real, and it can 
 result in reduced communication and collaboration. Computers holding especially sensitive 
 information may be completely isolated from the internet (an “air gap”) or may have limited, 
 carefully vetted access paths. 

 Individual consumers bear some of the burden of managing access controls. Every time an app 
 is installed, it asks for a set of permissions, and consumers should attend to these. However, 
 these permissions are often hard to understand, and often the only alternative is to not use the 
 app. Careful consideration needs to be paid as to how best to explain to users what their 
 choices mean, whether to have defaults be opt-in or opt-out and how frequently to ask users 
 questions. 

 Encryption 

 Encryption  is the process of altering data so its  true meaning can only be restored with the 
 correct decryption keys. That shifts the burden of privacy from a large dataset to a smaller 
 collection of keys. Sensitive data should be encrypted both when at rest (stored on disk) and in 
 transit (transmitted between computers). The most sensitive data might stay encrypted even 
 when in use (during computation), with homomorphic encryption or secure enclaves. 

 It’s easy to forget how much has changed since the internet's earliest days. In 1995, Netscape 
 introduced  HTTPS  (  HyperText Transfer Protocol Secure  )  over  SSL (Secure Sockets Layer)  . 
 It was used for passwords and financial transactions on the web, but was not commonly used to 
 protect user data. Most web data still traveled over the insecure HTTP protocol or improperly 
 configured versions of HTTPS. Only since about 2013 (due in part to the Snowden revelations 
 about government surveillance of internet traffic) has most network communication been 
 encrypted. As of 2021, most traffic now uses SSL's successor, TLS (Transport Layer Security). 
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 Differential Privacy 

 Differential Privacy  allows the release of summary  statistical information about a dataset while 
 maintaining the confidentiality of individuals within it.  228  For example, hospitals use differential 
 privacy to share medical information about the expected course of a disease, without 
 compromising the privacy of any patient. 

 The key insight is this: if an individual’s data is not in a dataset, then that information cannot leak 
 when statistics are published. Therefore, we should only answer queries such that there is a 
 vanishingly small probability that the querier can distinguish between the answers they get when 
 an individual is or is not in the dataset. Differential privacy is a way of figuring out the minimum 
 amount of noise that must be added to the data while guaranteeing a vanishingly small 
 probability of revealing confidential information. 

 Recently, using Census 2010 and other public data, the Census Bureau itself exactly 
 re-identified nearly 50% of participating individuals using just block, sex, age, race, and ethnicity 
 information. Motivated by the legal requirement that the Census keep personally identifiable 
 information confidential for 72 years, Census 2020 adopted differential privacy for the public 
 release of census results. However, scaling this idea to the breadth of the Census has run into 
 some practical problems, e.g., small subpopulations being affected more than larger ones and 
 logistical inconsistencies because of rounding fractional numbers to the nearest integer.  229 

 Whether differential privacy works sufficiently well for this application is yet to be seen. 

 Federated Learning 

 If data can be a liability for the company that holds it (due to leakage risks), then never holding 
 the data eliminates the risk. Suppose a company develops a speech recognition app that runs 
 on users' phones. To ensure privacy, no users’ voice recordings are transmitted to the company. 
 A machine learning algorithm could run on the phone, continuously learning and improving 
 performance for that one user. That’s an example of “use of data for self.” The goal of  federated 
 learning  is to allow this improved performance to  be shared by all users, making this “use of 
 data for others” without actually sharing any of the data. 

 Federated learning's trick is for each phone to transmit back to the company the machine 
 learning model parameters it has learned, but not any data. A company-controlled computer 
 then combines all users' parameters and broadcasts them back out, so everyone gets an 
 improved model. If users are worried that their individual parameters might be intercepted, a 
 technique called  secure aggregation  , where random  numbers are added to each parameter 
 value, can be used. The sum of the random additions cancels out to zero, so the aggregation is 
 accurate, even if each contribution is obscured. 

 Of course, even though each user’s voice recordings remain secure on their own device, users 
 may still be concerned that information about their recordings could be reverse engineered from 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  130 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 the model parameters. For many domains, such as voice recognition, this risk may be 
 adequately addressed by increasing the number of users over which aggregation is performed. 
 However, in general, to completely eliminate this privacy risk, it is necessary to add random 
 noise that does  not  cancel out to zero. This can be  done either by users’ themselves, or as part 
 of the aggregation, in a manner that guarantees differential privacy of the model parameters. 

 This raises the question of how to trade off local storage versus cloud storage. If data never 
 leaves a personal device, then individuals are no longer at risk of a data center breach, but they 
 have an increased risk of data loss if their personal device is lost, stolen, or damaged. The 
 threat of search warrants and other law enforcement requests remains no matter where the data 
 is stored, but overly-broad requests are more likely to target big companies. 

 Secure Multi-Party Computation (SMC) 

 Suppose multiple parties each hold some data, and they want to compute a function over its 
 aggregation while still keeping their individual data private. For example, say that a group wants 
 to compute their average salary without disclosing any individual salary. This is easily done if 
 they all trust a third party. They tell their salary to that third party and it then calculates the 
 average and reports back. 

 Doing this without a trusted third party motivates the technique of  Secure  Multi-Party 
 Computation (SMC)  . It relies on the difficulty of  breaking cryptographic primitives. Input data 
 (e.g., each person’s salary) is encrypted and a “garbled” circuit computes over these encrypted 
 values and publicly outputs a decrypted result for all parties. 

 In 2008, the Danish beet auction  used SMC with 1200  participating bidders.  230  In 2015, the 
 Boston Women’s Workforce Council partnered with  Boston  University  to determine if there are 
 wage disparities based on gender in companies in the Greater Boston Area.  231  In 2017, Google 
 and Mastercard used SMC to determine which ad clicks resulted in credit card purchases, 
 without divulging any individual’s identity or history.  232  SMC is practical and scalable  233  when the 
 computation is restricted. For example, computing an average or computing the intersection of 
 two sets, such as two customer lists. 

 Secure Enclaves 

 Another approach to guaranteeing data security is specially-designed computing hardware. 
 Modern CPUs have instructions that define a private memory region, called a  secure enclave  , 
 whose contents cannot be read or written by any process outside of that enclave, including the 
 operating system itself. An enclave protects its data by encrypting it in storage and decrypting it 
 only when a processor assigned to the enclave uses it. Enclaves enforce computation over 
 encrypted data in use, strengthening the previously discussed use of encryption at rest and in 
 transit. Getting secure enclave technology right has proven very challenging, as there are many 
 forms of attacks to analyze and counter. 
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 In 2015, Intel introduced Software Guard Extensions (SGX) in its Skylake microarchitecture to 
 support secure enclaves. AMD and IBM followed with their own variants in their respective 
 EPYC and S390 processors. Apple's M1 chipset uses a secure enclave for touch ID. Major 
 cloud vendors provide secure enclave-enabled services. 

 Homomorphic Encryption 

 Encryption makes data more confidential, but does not protect it against those who hold its 
 decryption keys. This leads to the question of whether a cloud provider could hold data, but not 
 have the keys?  End-to-end encryption  using traditional  methods can be employed if the cloud 
 provider is merely storing data. However, the cloud provider will not be able to process it, for 
 example, to retrieve all files containing the words “sales report” and “EMEA.” Those words won’t 
 appear in the encrypted files, nor will their encrypted versions, because strong encryption 
 methods do not encrypt words one-by-one. 

 Homomorphic encryption  lets certain computations take  place on encrypted data. For 
 example, a user can give encrypted search terms to the cloud provider and it could retrieve files 
 containing those words, without the provider knowing what the search terms are or what words 
 are in the files. The breadth of possible computations goes beyond search, but still has 
 significant limitations. 

 The mathematics for homomorphic encryption was developed in the 1970’s. However, initial 
 versions were impractical as the needed computations were trillions of times slower than 
 unencrypted computation. In 2009, Craig Gentry's Ph.D. thesis  234  spread virally in the 
 mathematics and computer science communities. His approach was only thousands of times 
 slower, not trillions. While still too slow for most use cases, it is sufficient for others, and cloud 
 providers are taking notice. Amazon, IBM, Google, and Microsoft all offer fast variants of 
 homomorphic encryption as part of their cloud offerings, but there are still significant limitations 
 on their use. 

 10.1.4 Location Data 

 Our cell phones know their own location quite accurately, and thus know their owner's. Cell 
 phones receive signals from Global Positioning System (GPS) satellites, WiFi hotspots, and 
 cellular towers, and can estimate the distance to their known positions. When signals are 
 unavailable (e.g., inside some buildings), a built-in inertial measurement unit measures 
 accelerations to compute location changes. 

 Location data is crucial to many key smartphone functions, such as direction finding and 
 physical fitness apps. If we search for “Vegetarian Restaurant” we expect our phone to show us 
 nearby restaurants. Fitness applications typically depend on knowledge of our running, hiking, 
 or bicycling paths to estimate our workouts and share them with others. Parents may get rights 
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 to track younger children's location, providing peace of mind while giving the children more 
 autonomy to roam. 

 Anonymous aggregation of location data can produce real-time traffic reports and measure the 
 popularity of different destinations. The previously mentioned Google COVID-19 Community 
 Mobility Reports, based on cell phone location data, help health officials track the effectiveness 
 of social distancing measures. 

 In all these aggregation applications, great care must be taken to not disclose any individual's 
 location. Individuals could experience embarrassment if revealed to be someplace they 
 shouldn’t. Businesses could lose strategic advantage if known to be meeting with a potential 
 partner. 

 Even aggregate information can cause problems. In 2017, an International Security student 
 noticed the Strava fitness-tracking app was revealing concentrations of GPS jogging tracks 
 made by users in remote areas of Syria, Yemen, Niger and Afghanistan.  235  Clearly, soldiers 
 were making these tracks and inadvertently revealing the locations. Strava did nothing wrong; 
 they displayed anonymized tracks for opted-in users who hadn't realized this compromised 
 military security. 

 Using location-dependent apps is a clear individual benefit, though there are risks as well. 
 Sometimes terms are not clearly specified, or there is an opt-out arrangement rather than opt-in, 
 and a user unintentionally shares information. 

 There is also a  chain of trust  issue where users may  be happy sharing with an entity, but not 
 sure whether that entity will in turn share their data with a less trustworthy entity–perhaps 
 someone they are not even aware of. In 2021 a company called X-Mode created a software 
 library for simplifying access to location data on phones. For example, a Muslim prayer app with 
 nearly 100 million downloads used X-Mode’s library to remind users when to pray based on the 
 phone’s location. But the library sent location data directly to X-Mode (not to the app-makers 
 who incorporated the library) without users' permission. It is not clear what X-Mode did with the 
 data. As a result, Google and Apple banned all X-Mode using apps from their app stores.  236 

 Any time data is recorded, there is always the chance that it may be leaked or requested by a 
 law enforcement agency. In general, society agrees that catching criminals is a good thing, but if 
 requests are too broad (“show me everyone whose phone was within a mile of this address on 
 this day where and when a crime occurred") then many innocent people may be subject to 
 harassment from authorities. 

 10.1.5 Unintended Consequences of Privacy 

 One unintended consequence of a strong privacy regulation focus is that it may force 
 companies to control information more tightly–by prohibiting external use, even of aggregated 
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 information. This may further increase the corporate push to vertically integrate, thereby 
 reducing the benefits of information sharing and of competition. Sharing scientific data, 
 particularly health-related, raises analogous problems, making multi-center projects more 
 difficult. “Democratizing data” is a worthy goal, but it must be weighed against privacy risks. 

 Every time a company delegates responsibility to subcontractors, it incurs an additional security 
 risk. Using cloud computing services makes some delegation almost inevitable, with cloud 
 vendors arguing their exceptional investments in security and privacy reduce risk. But 
 delegation can still lead to problems. For example, a 2020 data privacy breach at many 
 not-for-profits was due to a security breach at Blackbaud, a vertical cloud vendor that provided 
 their automation technologies.  237  The 2016 Facebook/Cambridge  Analytica scandal, discussed 
 in more detail in  Section 11.3  , also happened in part  because Facebook delegated data rights to 
 a party who violated them. 

 The complexity of meeting privacy regulations may be sufficient such that they increase barriers 
 to entry in markets, further favoring incumbents.  238  Just adhering to data take-out and deletion 
 rules can be hard for a small organization. In July 2020, North Dakota Representative Kelly 
 Armstrong noted European GDPR privacy regulations had had a negative effect on competitive 
 ads marketplaces, since Google was no longer making certain data public due to privacy 
 concerns.  239  Decisions by Apple, Google, and others  are ending the use of 3rd party cookies. 
 While this increases privacy, it could adversely affect 3rd party players in the online advertising 
 industry. 

 A notable privacy versus security challenge is illustrated by the TOR Project.  240  Among other 
 goals, TOR aims to provide anonymity for its users in surfing the web and communicating, yet it 
 also facilitates criminal behavior. 

 A privacy versus safety challenge arises in the fight against child pornography, which was 
 discussed in  Section 8.2  . While most internet services  proactively scan for illicit photos, maximal 
 privacy guarantees argue against this. For years, there seemed to be little debate that this was 
 the right thing to do. 

 However, in 2021 Apple, which had been a vocal privacy supporter, announced it was 
 undertaking these scans in a new manner that could eventually be used to scan photos that 
 only resided on user devices. To quell concerns, Apple published a lengthy Q&A and stated that 
 it was proposing to only scan photos stored in its iCloud service.  241  Privacy advocates then 
 persuaded Apple to delay its plans. As of early 2022, the plan has now gone back to the 
 drawing board to better tune competing objectives. 

 The more barriers to using information and sharing data, the harder it is for institutions to apply 
 data science and reap its rewards. If medical institutions could share patient records, then we 
 could build better machine learning models for diagnosis and treatment. For example, finding 
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 patients with similar mammograms to determine the best course of treatment. HIPAA prevents 
 this data sharing, further disadvantaging smaller clinics. 

 As another example, many (including co-author Alfred) believed that location tracing 
 applications on mobile phones, possibly fusing GPS and Bluetooth proximity data, would have 
 helped reduce COVID-19's spread.  242,243  However, the  perception of privacy risks in the western 
 democracies was often hard to overcome. While the necessary apps were written, they were 
 rarely used, though there were exceptions (e.g., Finland). Kai–Fu Lee argued that reduced 
 regulation and less societal concern over privacy gave Chinese institutions advantages over 
 others.  244  However since Lee’s book was published,  Chinese policy has been evolving, so time 
 will tell how this finally plays out. 

 10.2 Security 

 Computer security is concerned with protecting systems from “unauthorized access, use, 
 disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, 
 and availability.”  245  Computer security addresses  issues in storage, processing, and 
 communication. 

 Security is related to privacy because of the shared concern with undesired data disclosure. 
 Many privacy problems reported in the news are actually security breaches. Examples include: 

 ●  The 2015 break-in to the US Office of Personnel Management, which exfiltrated data 
 from millions of background checks of people seeking government security 
 clearances.  246 

 ●  The 2017 breach of over 100 million Equifax customer records.  247 

 ●  The 2020 breach of Blackbaud, which revealed philanthropists' personal data.  248 

 ●  The 2021 breach of 40 million T-Mobile customers' data, which exposed Social Security 
 numbers.  249 

 Beyond protecting confidentiality, computer security also covers attacks that interfere with a 
 system’s correct operation, such as malicious code insertion, denial-of-service, or ransomware. 
 Security is truly hard for many reasons including: 

 1.  Political and economic motivations for bad actors. 
 2.  The complexity of computer systems. 
 3.  The fallibility of programmers and systems operators. 
 4.  The sad truth that attackers are often as talented and well-funded as defenders. 
 5.  The asymmetry of the security challenge, where defenders must secure every door, 

 while attackers need only find one way in.  F  Even one vulnerability can allow inserting 15

 code in a system that acts as a vector for all manner of additional harm. In late 2021, the 

 15  We note that defenders do gain some leverage because fixing an important security vulnerability can 
 eliminate the possibility of multiple specific attacks. 
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 Log4j vulnerability, in a package which many Java programs depend on, again 
 demonstrated this risk.  250 

 Passwords  for controlling access are commonly the first line of security defense, but are 
 problematic. They can be leaked or phished  .  F  Common passwords can be guessed. Unusual 16

 passwords can be forgotten. For added security, it is best practice to use all three of: 

 ●  Something known, like a password. 
 ●  Something possessed, like a hardware token or a phone  F  . 17

 ●  Something biometric, like a fingerprint, retinal scan, or voice match. 

 The process for retrieving a forgotten password can’t be perfect, and will sometimes grant 
 invalid access or deny valid access. It is also good practice to set up contingency plans so 
 friends or family can access data if the user dies or is incapacitated. 

 Security is also a cat-and-mouse game; new mechanisms, new attacks by bad actors, and new 
 defensive countermeasures are constantly being tried out. Data science applications are inviting 
 targets, due to their importance, and breaches have serious repercussions. For society to trust 
 these applications, they must be secure. 

 The National Academies 2007 book,  Toward a Safer and  More Secure Cyberspace  ,  252  contains 
 a statement of security goals known as the  CyberSecurity  Bill of Rights  .  Table 10.1  lists these 
 goals and annotates each one with its implication on data science (  in italics  ). 

 Table 10.1 Security Challenges in Data Science: Cybersecurity Bill of Rights 

 I.  Availability of system and network resources to legitimate users. 

 Data science applications have become critical to society, and harm may result when they are not 
 available. 

 II.  Easy and convenient recovery from successful attacks. 

 Nothing is perfect, so systems need to recover. Consider the increasing number of ransomware attacks 
 such as the 2020 attack on the Garmin fitness tracking device and app. The attack took that application 
 down for days, and Garmin reportedly paid a $10 million ransom to get back online.  253 

 III.  Control over and knowledge of one’s own computing environment. 

 Users need to understand, trust, and have control over their computing environment, including their data, 
 whether it’s on their phone, computer, or internet services. Many users do not understand the available 
 privacy and security settings in user interfaces that are time-consuming to learn. 

 17  The phone’s hardware-protected secure element provides more security than retrieving a code from an 
 SMS message. 

 16  A  Google Blog Post  251  in 2019 reported there were  four billion username/password pairs that were 
 unsafe due to data breaches! 
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 IV.  Confidentiality of stored information and information exchange. 

 This is central to preventing information leaks and shared with concerns of privacy. 

 V.  Authentication and provenance. 

 Users need to prove their identities to systems in convenient and secure ways. If not convenient, the 
 mechanisms will not be used. If insecure, systems will mistakenly divulge data to imposters. Furthermore, 
 users should understand the provenance of their accessed data, which better enables understanding and 
 interpretation (or perhaps outright rejection) of it. 

 VI.  The technological capability to exercise fine-grained control over the flow of information in and through 
 systems. 

 Data flows and storage must be controlled within data science applications and the entities controlling 
 them. For example, data science applications must be locked down in ways that prevent programmers, 
 data scientists, or administrators from either mistakenly or maliciously divulging data. 

 VII 
 . 

 Security in using computing directly or indirectly in important applications, including financial, healthcare, 
 and electoral transactions, and real-time remote control of devices that interact with physical processes. 

 Each of these domains are potentially privacy sensitive, mission critical, and regulated. They must balance 
 innovation vs. resilience (See  Section 10.4  ) and preserve  confidentiality, while allowing the needed 
 transparency of operation to regulators and law enforcement. 

 VII  The ability to access any source of information (e.g., e-mail, web page, file) safely. 

 Users of data science-enabled systems need to be confident that they can access information privately 
 and without fear of corruption, regardless of location, communication network, or device. 

 IX.  Awareness of what security is actually being delivered by a system or component. 

 Users benefit from understanding the security properties of systems they use, including but not limited to 
 data privacy, thereby letting them make cost-benefit trade-offs. 

 X.  Justice for security problems caused by another party. 

 Users will be more confident in data science applications if they believe bad actors will be punished and 
 that there is due process that could compensate them for actual harm. 

 The good news is that many governmental entities, organizations, and individuals recognize the 
 challenges and have improved computer security. However, the risks remain high. The CSO’s 
 2021 survey indicates that a majority of organizations suffered economic damage from security 
 incidents, 28% said PII (Personally Identifiable Information) was stolen, and 12% suffered 
 “massive” economic loss.  254  Because of this, 71% of  organizations plan to increase their security 
 budget. Security implementation challenges include: 

 ●  Safe user authentication mechanisms, given human propensity to cut corners, such as 
 reusing passwords and the prevalence of bad actors tricking users into providing 
 credentials and/or access to them. 

 ●  Preventing and recovering from ransomware attacks. 
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 ●  Using audit data and other real-time signals to detect attacks or other breaches in a way 
 that does not add additional risks, such as divulging confidential information. 

 ●  Encrypting data and managing encryption keys in easy yet secure ways. As mentioned 
 in  Section 10.1  , encryption is a key to privacy and  the future of hardware-based 
 encrypted-computation mechanisms, such as secure enclaves. 

 ●  Verifying and operationally maintaining the correctness of vast amounts of computer 
 software, particularly when it includes possibly opaque externally written software 
 libraries. 

 ●  Protecting against nation-state malfeasance aimed at infiltrating and sabotaging 
 organizations that operate data science applications. 

 ●  Creating policies and procedures for operational and regulatory responses to failures if 
 and when they occur. 

 Regrettably, there are no simple solutions to these issues. First, security revolves around 
 people. Second, computer systems consist of many complex and diverse components of 
 unclear provenance. The breadth of security problems has convinced co-author Alfred that 
 computer security is computing's greatest challenge. 

 10.3 Resistance to Abuse 

 In the early days of computer networks, the user base was a small homogeneous community of 
 computing researchers, students, and teachers. Like the residents of a small town, they trusted 
 each other and felt no need to lock their doors. MIT’s 1967 ITS time-sharing network allowed 
 anyone to use it without a password or account. The benign nature of these early days provided 
 a false sense of security. 

 With a million-fold growth in the user population of network systems,  F  developers of systems 18

 must remember that a significant number of users may be bad actors. Small-town trust has 
 disappeared, and nefarious actors have moved in–everyone from teenagers making a little 
 mischief, to professional criminal rings, to political movements willing to play dirty tricks, to 
 terrorist operations, to nation states with billion-dollar cyber warfare budgets. Defending against 
 the most sophisticated attackers has been an enormous challenge that is still not fully 
 understood or controlled. Facebook has removed more than a billion fake accounts per quarter 
 since late 2018.  256 

 We define  abuse  as using a computer system outside  of its rules of behavior, usually with the 
 goal of subverting its proper operation and achieving some disruptive, profitable, political, or 
 nihilistic end. Whereas security attacks involve deliberate efforts to compromise programs and 
 data, abuse is committed without any security penetration. Regrettably, there are many 
 examples: 

 18  The Arpanet Directory of 1978  255  had 4,000 individuals  listed in it, contrasted to the billions who use the 
 successor internet today. 
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 ●  Advertising click fraud was an early case of widespread abuse. To produce advertising 
 revenue, some advertising property holders, who were paid per ad click, would build and 
 deploy bot networks that clicked on ads to generate revenue. In effect, they 
 manufactured fake data (i.e., clicks). In response advertising systems developed 
 anti-abuse systems to detect and discard this data. 

 ●  Search engines rank pages among factors including the page contents, the links to it, 
 and the clicks it receives. An industry of “white hat” search engine optimization attempts 
 to make pages better by improving these factors. There is also a shadow “black hat” 
 industry that attempts to trick search engines without actually improving pages. Because 
 of this, mechanisms to thwart abuse have long been essential. 

 ●  Online marketplaces like Amazon rank products in part by user reviews. This has led to 
 fake reviews falsely promoting a product, or falsely putting down the competition. 

 ●  Facebook, Twitter, and others have had to contend with advertisers who hide their 
 national identity and publish propaganda-style content. This behavior violates policies 
 and laws limiting foreign interference. Even when a large percentage of such attacks are 
 successfully defended against, those that get through are harmful. 

 ●  Facebook mistakenly let abusers steal a half billion users' personal data via a 
 vulnerability in the “contact importer” tool. If an uploaded contact list included a 
 Facebook user's phone number, then Facebook completed the contact entry with that 
 user’s data. Abusers uploaded contact lists with random phone numbers. 

 ●  Microsoft’s chatbot, Tay, was taught hate speech in less than one day through repetitive 
 hate-speech messaging to it.  257  The chatbot was metaphorically  a parrot, which 
 regrettably learned all too quickly and well. 

 Deep fakes  use computer-generated images, audio, or  video that seem to portray a real person 
 doing or saying something that they did not. Machine learning advances have increased the 
 ability to create these fakes and made them more realistic. Advances have also enhanced our 
 ability to detect deep fakes, leading to another cat and mouse game.  258  Techniques of data 
 provenance, mentioned in  Section 8.3  , could be a partial  solution as they might deter abuse and 
 let viewers know the chain of creation of what they are watching or listening to. Some camera 
 manufacturers now offer hardware that helps prove authenticity. 

 All computer systems are vulnerable to abuse. However, data science applications are doubly 
 vulnerable since both programs and data can be attacked. There are three subcategories of 
 data attacks:  adversarial data attacks  ,  data poisoning  ,  and  model stealing  . 

 In an  adversarial data attack  , the attacker crafts  an example specifically to trick a machine 
 learning program into giving a wrong prediction. Consider an image recognition program that 
 takes images as input and outputs labels such as “panda” or “gibbon.” With access to a model's 
 exact parameters, an adversary can start with, for example, an image of a panda. They then 
 mathematically determine the minimal number of pixels to change so the model will label it as 
 “gibbon.” 
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 The necessary changes are often surprisingly small.  Figure 10.1  shows that the resulting 
 adversarial image does not look like a half-panda-half-gibbon. To the human eye it is 
 imperceptibly different from the original panda image. 

 The bottom part of the figure shows that the human visual system is not immune to 
 misinterpreting small changes in an image. The dots in the corners of squares fool the eye into 
 thinking the straight lines are not straight. 

 Top: Changing a small number of pixels yields an adversarial image that is mis-labeled by a deep 
 neural network  259  used by courtesy of the authors.  Bottom: Optical illusion fools humans. Image 
 copyright Akiyoshi Kitaoka, used with permission. 

 Figure 10.1 Adversarial Images and Optical Illusions  . 

 The first adversarial attacks were tailored to fool one specific machine learning model. Recent 
 attacks are more robust; a single adversary can fool multiple different models. Successful 
 adversaries can be made from 3-D printed shapes photographed at different angles, or by 
 adding small amounts of graffiti to road signs to confuse self-driving cars.  260  Similar adversarial 
 attacks also work in speech recognition and natural language understanding. 

 Previously, it had been widely accepted that small changes to an image would lead to small 
 changes in the probabilities of each label. It turns out this is not the case for deep neural 
 network models. In these high-dimensional non-linear models, it is easy to find cases where two 
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 examples are close to each other in the input space, but are assigned different labels by the 
 model. 

 Several steps can partially mitigate adversarial attacks: 

 ●  Train on more images from a wider variety of situations. 
 ●  Generate synthetic images with a rendering program that can produce variants with 

 different rotations, blurring, textures, color tinting, and backgrounds. 
 ●  Keep the details of the model secret. This makes it harder for an attacker to be sure of 

 success, but many attacks work against a wide variety of similar models. 
 ●  Defend against adversarial attacks as part of the development process, and retrain using 

 the successful adversarial images as additional data. 

 Even with these defenses, we can’t guarantee protection against adversarial attacks. 

 The second subcategory of data attacks is  data poisoning.  Adversaries feed a training 
 machine learning system bad data, resulting in a model vulnerable to future attacks. This can be 
 a problem for any system that accepts data from users. 

 For example, an email system lets users label their emails as spam or not spam. It then uses 
 those labels to train a machine learning model. Attackers can open multiple accounts, flood 
 them with their own spam messages, label them as not spam, and there's a good chance the 
 model will accept their subsequent messages as not spam. Similarly, the Tay chatbot suffered 
 from data poisoning. 

 To mitigate data poisoning, it is important not to let any one group contribute too much data to a 
 model. Monitoring may detect when an attack is underway, and regression testing can show if 
 the attack succeeds in changing the system’s predictions. 

 The third subcategory is  model stealing.  Attackers  do not disrupt a system's operation, but 
 make enough queries to it that they can either reproduce the underlying model and steal it or 
 they can determine if the model uses particular data, thereby compromising privacy. A strong 
 defense against model stealing is not to have a single model, but rather to train an ensemble of 
 models. Private Aggregation of Teacher Ensembles (PATE) is one such ensemble training 
 method.  261 

 To summarize, any valuable data science application is a potential target for attackers, and 
 defense against abuse is needed. First, when designing applications, developers must keep 
 abuse defense in mind.  F  Second, developers must invest in abuse prevention, which could be 19

 more costly and time-consuming than creating the application. Prevention techniques include: 

 19  This lesson is apparently still hard to fully learn; at the very hour this paragraph was receiving its 
 penultimate revision, a new Slack feature was immediately subjected to abuse and had to be disabled.  262 
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 ●  Defensive thinking (imaging what an attacker could do). 
 ●  Minimizing feedback to attackers (don’t tell them when they’re getting closer). 
 ●  Limiting the attack surface (e.g., by rate limiting queries). 
 ●  Planning for managing incidents and emergency responses. 
 ●  Monitoring for anomalies (even if potential attacks cannot yet be identified). 

 Anomaly detection paid off when Bitcoin prices rose in 2017. Various actors started using 
 Google Cloud servers to mine for Bitcoin. It wasn't profitable to pay for the servers, so attackers 
 used stolen credit cards, phishing, and other attacks to gain access. Monitoring systems 
 detected changing usage patterns for Cloud computing, and Google analyzed what was 
 happening, shut down illegitimate use, and warned clients with compromised accounts. 

 As with all computing, abuse techniques will continue to evolve, as will anti-abuse measures in 
 response. 

 10.4 Resilience 

 Resilience  refers to a system's ability to metaphorically  bend, compress, or stretch so as to 
 continue to function under stress, to rarely crash, and to recover quickly after a failure. Also, 
 they must produce anticipated results under challenging circumstances. We say “anticipated” to 
 indicate perfection is not required, but results should be within expected ranges. 

 Resilience is most important for critical infrastructure, such as power and water systems, and 
 life and death situations, such as in clinical systems. More mundanely, we are becoming 
 increasingly dependent on data science applications–ranging from our phone and email 
 contacts database, to our communications infrastructure, to automatic map routing. Since we 
 rely on them, they must be resilient. 

 Co-author Alfred recalls visiting a major medical center circa 2010 and seeing that patient bed 
 assignment was done on a whiteboard. The team knew the manual process was sub-optimal, 
 but believed it would work in almost any scenario. They could not tolerate the risk and liability if 
 computer systems failed. Possibly it was an excuse to not automate the system, but their 
 system did indeed need to function even under dire circumstances. 

 Co-author Peter recalls arriving at Heathrow airport to find that the terminal had no power. 
 Happily, everyone boarded and departed on time even though the computers were down. This 
 was a great example of a computer system so resilient it could operate even without computers. 
 Someone had the foresight to plan for a power outage, to have paperwork printed offsite, and to 
 train personnel to carry out the procedures to use these paper backups. 

 The Boeing 737 Max crashes in 2018 and 2019 showed a lack of resilience in a data-centric 
 control loop added to overcome flight instability due to retrofitting very powerful engines in an 
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 older airframe. With the control loop in operation, the plane is more efficient and easier to fly 
 than its predecessors, with the key proviso that the airspeed sensors would report the correct 
 airspeed. 

 However, the 737 Max’s design was susceptible to just one sensor's malfunction, so a single 
 failure could make the plane nearly impossible for some pilots to control. This resulted in 
 catastrophic crashes in 2018 and 2019, followed by two years of the aircraft’s grounding. 
 Interestingly, this problem was solved properly in the 1970’s on the Space Shuttle.  263  Boeing 
 engineers mistakenly (i) made their system overly dependent on data from sensors that proved 
 unreliable and (ii) did not properly prepare pilots to seize manual control during a failure. 

 In retrospect, engineers overly optimized for fuel economy and time to market at safety's 
 expense. While this may seem a bit far from many data science examples, it is a perfect 
 example of the challenges of achieving resiliency; the needs for data redundancy, graceful 
 degradation, and sufficient preparation for manual override. 

 Resiliency suggests there should be no single point of failure, but this often conflicts with a 
 desire for optimality. Consider scheduling pickups for an Uber/Lyft-like service. If requests for all 
 services were to flow through a single system, it could compute the optimal schedule, 
 minimizing wait times and miles driven. However, a single failure could disrupt all service. 
 Instead, if different computers schedule competing services, each service might have slightly 
 longer wait times, but single failures would cause less global disruption. 

 The Irish Potato famine of 1845 is, in part, traceable to a lack of resilience. Farmers 
 overwhelmingly planted the  Lumper  potato variant because  of its high yield even in poor soil. 
 This was optimal for years, but Lumpers were vulnerable to water mold which wiped out much 
 of the crop. The famine would have been less severe if there had been more crop variety. 

 In general, systems should take care to leave some buffer between their normal operation and 
 their theoretical maxima just in case something goes wrong. Pre-COVID-19, the internet was 
 provisioned with extra capacity to support streaming video–which proved essential for the 
 widespread video conferencing needed during the pandemic. In 2008, the global financial 
 system had insufficient buffers, resulting in a debt-induced recession. Regulations were written 
 that try to fix this. 

 Tom DeMarco calls this buffer  “Slack”  in the 2001  book with that title.  264  Companies that focus 
 on optimizing labor productivity turn out to do worse than companies that build in some slack. 
 For example, firms can employ extra employees so no one burns out, order extra supplies to 
 prevent ordering delays, and support extra projects that might slightly delay the main project, 
 but could eventually lead to even more valuable ones. 

 Perhaps the most well-known failure due to lack of resilience was the 1940 Tacoma Narrows 
 Bridge disaster. Bridge engineers want to make their structures robust, but don’t want to waste 
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 time, money, and materials making them stronger than necessary. The Tacoma Narrows Bridge 
 was the first to use carbon steel girders, an optimization that reduced the amount of concrete 
 needed, and thus the overall weight. However, the engineers miscalculated how wind would 
 interact with this new design, resulting in the bridge tearing apart in 40 mph winds. The video of 
 its divergent oscillation is an invaluable lesson in humility, and a reminder that models may not 
 predict all behaviors, and that people can be slow to respond to early warnings.  265 

 Achieving resilience in a data science application requires attention to at least nine issues: 

 1.  Resilient systems need to prepare for  known-unknowns  .  These are out-of-the-ordinary 
 but understood events whose timing or implications are not understood. They must also 
 prepare for  unknown-unknowns  , which have never before  been seen. Even though, by 
 definition, unknown-unknowns are unknowable, we can set forth their general categories 
 and include those in resilience considerations. 

 2.  Applications with many users tend to change the world in which they operate, and we 
 need to think ahead to that changed world. For example, consider how the post-Twitter 
 world is different from the world before Twitter. This poses a problem for machine 
 learning algorithms trained on past data, but which operate in the present. For example, 
 combating click fraud is more than eliminating current scam operations. It also involves 
 thinking about what a scammer's next moves will be, how to respond to those moves; 
 how they will respond to the response, etc. 

 3.  We can only trust solutions we understand sufficiently well. To achieve a non-resilient 
 success, we could gather some data, train a model to achieve high accuracy, and stop 
 there. But to be guaranteed resilience, we need enough understanding to know how and 
 when the model will work, and how it might fail. If the problem is a control loop, we 
 probably need to understand the problem's underlying physics. A working program is 
 evidence of a good solution, but to achieve resilience, we want not just evidence but 
 something closer to a proof. 

 4.  We gain trust through verification and validation. There are standard software 
 engineering practices to achieve this, and they should be applied to data science 
 applications. But verifying data science algorithms is more challenging because of 
 inherent uncertainty in their input data as well as their deployment environment.  266 

 5.  Resilient systems must have good neighbors. We can make sure the core algorithms are 
 correct, but a system has many peripheral parts; user interfaces, sensors, servers, 
 networks, operating systems, and miscellaneous software. All of these should be verified 
 and validated. Attention should be paid to staffing and training of people working with the 
 system. Any imported technology should be equally scrutinized. 

 6.  Applications of data science are likely to use many subcomponents, often constructed by 
 different organizations, making it hard to assure their reliability. This also leads to 
 complex forensics problems if it is ever needed to determine what went wrong. The 
 SolarWinds hack and the log4j vulnerability are examples of the far reaching, harmful 
 implications of a security flaw in a commonly used subcomponent.  267  Most software has 
 dependencies on components. However, it is much more common in data science for 
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 those components to operate with only probabilistic correctness. This makes it harder to 
 determine if they are fit for the intended purpose. As noted earlier, speech recognition 
 may work fine in some applications, but not in others. 

 7.  Resilient systems must be maintained and operated, perhaps over decades. Systems 
 almost always require some operational management and maintenance. Operational 
 personnel make mistakes that are often the cause of failures. Ironically, systems that 
 work really well are at risk of mismanagement because operators have lowered vigilance 
 and less experience with correcting errors. 

 8.  When a machine learning technique is used, it should exhibit  Robustness  , such that the 
 technique produces similar outputs despite perturbations of the input. For example, we 
 would want an image classifier to be robust to darkening or rotating an image. A 
 classifier for road signs used by self-driving cars should still correctly classify an image 
 of a stop sign even if the sign is discolored or bent, or if parts of the image are 
 obscured.  268  Robustness is of special importance in  countering the adversarial machine 
 learning attacks discussed in the previous section. 

 9.  Finally, data science applications do so much so well that they can lull data science 
 professionals and user communities alike into a false sense of complacency. It is hard to 
 remember what can go wrong when things are working. 

 All engineering approaches to resilient systems need to consider these issues. The needed 
 level of perfection depends on the data science application, and not all aspects of each 
 application are equally important or require equal analysis. 

 We end this section with a discussion of  humility  .  Designers of critical systems must 
 understand that things can go wrong, due to unimagined factors they have no control over. Just 
 as computer security engineers argue for Defense in Depth”  269  , data scientists should design 
 resilient systems that can quickly respond as problems happen. 

 In summary, this chapter covered systems' need to be privacy- and security-focused, abuse 
 tolerant, and resilient. Achieving these goals can be harder than the underlying data science 
 algorithms due to heightened dependency on the availability of data, algorithms, and related 
 infrastructure. Sometimes quick results can be obtained while ignoring these topics, but there 
 will often be a significant price to pay. 
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 Chapter 11. Understandability 

 In  Chapter 1  we said that data science is concerned  with both  conclusions  and  insights  . We 
 want our algorithms to make accurate predictions, but we also want to  understand  what is going 
 on. Understandability is important for five stakeholders: 

 ●  The  developers  of a data science application need  to validate that it is working properly, 
 and if not, understand how to improve it. They will look at the whole pipeline and ask: Do 
 we have the right data? Have we chosen the right machine learning model and found the 
 best hyperparameters? Is the model performing well? 

 ●  The  users  of an application need to trust its recommendations.  They are mostly 
 interested in their own particular case. For example, when a machine learning banking 
 application denies a loan, the customer wants to know what financial matters they 
 should change before reapplying. 

 ●  The  general public  , even if they are not users, want  assurance that the application is not 
 causing harm to society or acting unfairly. 

 ●  The  regulators  want to understand if an application  complies with laws and regulations, 
 discriminates against a protected class, or exhibits signs of unfairness or potential harm 
 to society at large. They need to know if the application was developed with reasonable 
 standards of diligence, and if not, who is accountable. 

 ●  The s  cientific community  will wish to have access  to the data and model so it can 
 reproduce results to confirm their validity or extend them. 

 This chapter's first three sections mirror the Analysis Rubric's Understandability Element 
 explaining how a conclusion was reached, dealing with causation, and having reproducible 
 results. The fourth section is about communicating data science findings without being 
 misleading. 

 11.1 Interpretability, Explainability, and Auditability 

 For many toddlers, “why?” is a favorite retort to any new information. The same is true for 
 consumers of data science applications: “Why did the system recommend this movie?” “Why 
 was I denied a loan?” “Why was this disease diagnosed?” The reason matters; we are taught in 
 school that the reasoning, or showing your work, is as important as the conclusion itself. Thus, 
 data science applications that cannot show their reasoning are at a disadvantage. We say that a 
 system is: 

 ●  Interpretable  if experts can determine, by examining  its inner workings, why it came to a 
 conclusion. 

 ●  Explainable  if the system can give the reasons for  its conclusion. 
 ●  Auditable  if we can tell how the system got to a state,  produced an output, what was 

 responsible for each step, and who is accountable. 
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 For machine learning system developers, understanding is crucial for modifying and improving 
 the system. Toolkits such as IBM’s AI Explainability 360, Facebook’s Captum, and Google’s 
 What-If Tool help with understanding by letting developers have a conversation with their 
 models, asking questions including: 

 ●  How do an example's results change if some features changed? 
 ●  How would the model's aggregate results change if some of the hyperparameters 

 changed? 
 ●  Which input features contribute the most to the results? 
 ●  What do typical data points look like on a histogram? 
 ●  What do outlier data points look like on a scatter plot? 

 For a machine learning system's users, understanding provides insight and builds trust: 

 ●  In portfolio optimization, investors prefer to understand why trades are made. While 
 long-term success might be more important than explanation quality, investors still want 
 to know the reasons behind trades. This is particularly the case for disappointing trades 
 for which reassurance would be comforting. 

 ●  In recommendation systems, users may wonder “Why should I watch this movie?” An 
 explanation–“You liked other films by this director”–makes it more likely they will accept 
 the recommendation, and less likely that they will have a bad reaction to a poor 
 recommendation. 

 ●  In medicine, a physician is far more likely to accept a diagnosis with potentially risky 
 treatments if there were a believable explanation to justify it. 

 We have been told–by Aristotle, William of Occam, Kant, Einstein, and others–that a good 
 explanation should be simple. Good explanations are also relevant, believable, thoroughly cover 
 known evidence, and tell the truth. Such explanations are of great value, as we learn by paying 
 attention to explanations. 

 However, our learned preference for simple, general explanations can be counterproductive in 
 complex domains with few general rules and variability for each case.  270  In complex domains, no 
 simple explanation can tell the whole truth and nothing but the truth. This lack holds true when 
 dealing with any of a simple regression model, a sophisticated deep learning network, or a 
 human analyst. 

 Sometimes we place too much trust in explanations. At the end of every trading day, stock 
 analysts provide explanations such as “The Dow closed lower as traders worried the Federal 
 Reserve could start raising rates sooner than expected” or “Stocks charged higher as investors 
 focused on strengths in the US economy.” These explanations sound plausible, but are less 
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 impressive when we realize they are post-hoc. When these same analysts make binary 
 predictions about the future, they are wrong about half the time, thus casting doubt on their 
 explanations. 

 What is an explanation's correct level of detail? Consider a deep neural network designed to 
 predict what type of bacteria is present in a patient. When given a specific case, the system 
 might diagnose  Enterobacteriaceae  , with this opaque  explanation: 

 A series of matrix multiplications of the input feature vector and the millions of model 
 parameters resulted in a vector of numbers which, when operated on by the softmax 
 function, produced a peak in the position for  Enterobacteriaceae  .  Would you like to see 
 the exact values of the millions of parameters? Or the intermediate-level sums? 

 This low-level “explanation” is not helpful. How can we do better? 

 Visualization aids, as discussed in  Section 1.2.1  ,  can help with understanding.  271  They work well 
 when a problem has a small number of important features. Two-dimensional plots are easy to 
 understand. There are other techniques to help with a small number of additional 
 dimensions–utilizing perspective or animation to visualize the third dimension; showing multiple 
 two-dimensional plots side by side; or representing additional dimensions with the color, size, or 
 shape of points in the plot. 

 But what if there are many more features, say 14? The human visual system is not equipped to 
 handle them all at once. Geoff Hinton’s advice:  “Visualize  a 3-D space and say 'fourteen' to 
 yourself very loudly. Everyone does it." 

 Work has been done on explanation facilities that examine a neural network model's state and 
 generate an explanation such as this: 

 The gram stain is positive, and the portal of entry is gastrointestinal tract, and the locus 
 of infection is the abdomen; therefore there is strongly suggestive evidence (85%) that 
 Enterobacteriaceae is the class of organism. 

 Note this is a  story  that emphasizes part of the situation.  So are all other explanations, whether 
 from machines or humans. Doctors can produce a story like that one, but they probably first 
 subconsciously come to a decision, then recall facts supporting the decision and deemphasize 
 less relevant facts. 

 Some researchers suggest that, rather than have one system optimized to make the best 
 predictions, and a second, separate, system to generate explanations, it would be better to have 
 a single machine learning system that is inherently interpretable.  272  The advantage is the direct 
 correspondence between the prediction system and the explanation. Simpler machine learning 
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 models, such as classification and regression trees (CART), produce outputs similar to the 
 above  Enterobacteriaceae  explanation. Humans find  these easier to interpret. 

 The disadvantage is that such systems often sacrifice accuracy. One study of bioinformatics 
 data  273  is typical; a difficult-to-explain neural  net model had 74% accuracy, while a more 
 explainable decision tree model had only 57%. The moral is that complex problems usually 
 demand complex solutions. If a problem were amenable to a simple explanation, then we 
 probably wouldn’t need a complex machine learning model. Trading off decision accuracy for 
 understandability remains a challenge.  274 

 There are also tradeoffs between explanations and privacy. We can’t explain a medical case by 
 saying “Your symptoms are just like patient Alex Doe, who had anaplasmosis” which 
 compromises Alex’s privacy. This tension leads to contradictions, such as in the French  Loi pour 
 une République numérique  , which has heavy penalties  for companies violating digital privacy. It 
 also says that citizens subject to “a decision taken on the basis of an algorithmic treatment” 
 have the right to ask for an explanation. It should include “the data processed and its source.” 
 Note that the law does not say how a company can both provide “the data processed” and keep 
 it private. 

 Providing explanations can compromise a model’s integrity. The US Equal Credit Opportunity 
 Act provides a right to explanation. A creditor that denies a loan must “indicate the principal 
 reason(s) for the adverse action.” This applies whether the decision was made by a human or 
 an algorithm. 

 Suppose a bank customer gets the explanation, “The loan would have been approved if you had 
 four more months of debt-free credit card payment.” If the customer comes back in four months 
 with a credit card payment record, should they be approved? Not necessarily, because the 
 decision was predicated on a model of customers paying off their debts on their own accord, not 
 ones who were told to do so. 

 While the right to an explanation is valuable, sometimes an audit is more important. If an 
 individual suspects a creditor is biased against her due to race, religion, or gender, the 
 explanation about needing more debt-free months won’t resolve my suspicions. But an audit 
 breaking down the decisions for similar cases by protected class will help. 

 Explanations can help a company accused of negligent behavior. Legal liabilities are often 
 based on the care with which a decision was made. While many have written about the Trolley 
 Problem's complex ethics when a self-driving car might be forced to decide between the lesser 
 of two evils,  275  a court of law might want the vehicle’s  software to explain the rationale for its 
 choice. A system may even need to show that it has been applying a regulator approved 
 algorithm.  Section 14.1  has more on legal issues. 
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 We regularly use systems that cannot thoroughly explain themselves. We humans make 
 decisions and only post-facto rationalize our decision-making with plausible, possibly 
 self-serving explanations. But understanding through interpretability, explanation, and audits 
 helps build trust. Regulatory regimes may limit data science's use if it cannot provide this 
 trust.  276 

 11.2. Causality 

 Determining a domain's causal structure is a crucial part of understandability. As we defined in 
 Table I.2  ,  causality  means that an intervention on  one variable contributes to a change in 
 another. From a scientific point of view, a model is incomplete unless it can explain what 
 happens if “I do X rather than Y” – in other words, it can make predictions about the 
 counterfactual.  From a practical point of view, we  want to use a model to find an optimal 
 action. One way is to predict the causal effect of each possible action. 

 Suppose an ice cream company's data scientist observes this data on ice cream sales and the 
 local monthly average temperature, as shown in  Figure  11.1  . 

 (hypothetical data by the authors) 
 Figure 11.1 Ice Cream Sales and Temperature by Month 

 We see that temperature and ice cream sales are correlated; they rise and fall together. The 
 correlation can be quantified: the Pearson correlation coefficient is 0.90, indicating a strong 
 positive correlation. But the correlation does not tell us about causation. It could be high 
 temperatures cause high ice cream sales, or high sales cause high temperatures, or some other 
 unobserved variable causes both. We can’t tell just from looking at the numbers. 

 Statistics lets us estimate a joint probability model, such as P(  Temperature, Sales, Price  ), that 
 says how probable it is for a given temperature to co-occur with a given sales level and a given 
 price. In the language of  potential outcomes  we could  attempt to model what the sales would be 
 were we to get the price. A complementary framing is that of probability modeling which 
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 differentiates outcomes caused by “doing” an action rather than those observing how outcome 
 and action were correlated.  F  We could make either  of two similar-looking but distinct queries: 20

 1.  P(  Temperature, Sales, Price  =$3) 
 2.  P(  Temperature, Sales, do  (  Price  =$3)) 

 Query 1 asks: Given past data, what is the distribution of likely temperatures and sales levels for 
 when the price was $3. A joint probability learned from observational data answers this. 

 Query 2 asks: If we set the price at $3, what effect would that have on the temperature and 
 sales. To answer this query we need a causal model. A joint probability learned from 
 observational data is not enough. 

 In this context the price setting action is an  intervention.  We are not just observing the world, 
 we are intervening to change it. We know from experience that setting a price can affect sales 
 (the law of supply and demand) and that setting a price does not change the weather. Each of 
 these is an example of a causal assumption. 

 We formalize this intuition with a  structural causal  model  , consisting of a directed acyclic 
 graph with random variable nodes, causal influence arrows, and probability distributions 
 associated with each variable. Each variable's value depends only on its parents' values (the 
 nodes with arrows pointing to it). The variables can be classified as: 

 ●  Intervention variables,  which we have the option of  changing 
 ●  Outcome variables,  which we hope to change via intervention 
 ●  Observed variables,  which we can observe but not change 
 ●  Unobserved or hidden variables,  which we have no measurements  for, but know play a 

 role in the causal effects 

 The structural causal model for ice cream sales shown in  Figure 11.2  left is sensible (the 
 model's arrows indicate sales is a function of price, temperature, and other factors, but 
 temperature cannot be altered by a change in any model variable), and the one shown in Figure 
 11.2 right is folly (the arrows incorrectly say temperature is determined by sales and price). 

 20  See the book  Counterfactuals and Causal Inference  for an excellent discussion of how Pearl’s “do 
 calculus” relates to potential outcomes and other technical frameworks for modeling and learning 
 causality.  277 
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 Figure 11.2 Sensible and Incorrect Causal Models 

 We have to be especially careful of  confounding variables  .  These are variables causally 
 related to the outcome variable, and also correlated with an intervention variable (the correlation 
 can be causal or not). For example, consider the correlation between ice cream consumption 
 and sunburn cases. The data shows the two are highly correlated, but neither causes the other 
 (as shown in the two incorrect models below left and middle). A better causal explanation is that 
 higher temperatures leads to increased time outside in the sun, which in turn leads to both 
 increased ice cream consumption and more sunburns, as shown in  Figure 11.3  . 

 Figure 11.3  Incorrect & Sensible Models: Illustration  of Hidden Variables 

 So far, we have considered simple causation examples, where one or two variables are the 
 direct cause of another. But there can be complex multi-step chains of causation, and side 
 influences that block or enhance the causation. See  The Book of Why  278  for a complete catalog 
 of causal inference graph topologies. 

 Getting causation right is a key way that data science leads to understanding. Don’t be 
 distracted by strong yet spurious correlations, such as the one in Figure 11.4.  279 
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 A close correlation between the number of letters in the winning spelling bee word and the 
 number of people killed by spiders, by year. Figure from tylervigen.com, based on National 

 Spelling Bee and Centers for Disease Control and Prevention data sources. 
 Figure 11.4 Demonstration of Spurious Correlation 

 11.2.1 Design of Experiments 

 With the enhanced interest in vaccine testing during the COVID-19 pandemic, the public learned 
 something statisticians and epidemiologists long knew. The “gold standard” for discovering 
 cause and effect is the  randomized controlled trial  (  RCT  ). In a randomized controlled trial, a 
 subject population is randomly chosen from a population of interest and then further randomly 
 divided into two groups, a  control group  and a  treatment  group  (also called the intervention 
 group). Then a treatment (also called a stimulus) is applied to the treatment group. If there is a 
 significantly different outcome between the two groups, we can infer the treatment likely caused 
 the outcome. 

 A well-designed randomized controlled trial takes into account: 

 1.  A well-defined  outcome measure  : For many COVID-19  vaccine studies, this was 
 whether human subjects developed virologically confirmed (PCR positive) symptomatic 
 COVID-19 cases. 

 2.  Sufficient power  : The experiment should be designed  so that it will have a good chance 
 of detecting the effect. Given an estimate of the variance in the population, and the size 
 of the effect to be detected, one can calculate the number of subjects needed. 

 3.  Recruitment  : In 1936  Literary Digest  magazine polled  10 million people and predicted 
 that Alf Landon would win the presidential election. With 10 million subjects they 
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 certainly had sufficient power, but nobody remembers President Landon because he in 
 fact lost 46 of 48 states to Franklin Delano Roosevelt. Where did  Literary Digest  go 
 wrong? They got their subjects from three sources: their own readers, automobile 
 registrations, and telephone subscribers. But in 1936 many people could not afford 
 literary magazines, nor cars, nor telephones, and those who could not were more likely 
 to vote for Roosevelt.  Literary Digest  failed because  the subjects they recruited differed 
 from the population of voters they intended to sample. 

 4.  Retention and attrition controls  : When an experiment  recruits human subjects who will 
 be tracked over months or years, there must be a plan to encourage them to stay with 
 the experiment. However, some subjects will inevitably drop out; they move away, or 
 lose interest in participating. If the attrition pattern is random, then care is needed to 
 choose a statistical technique that gives an unbiased estimate of the missing data. If it is 
 non-random for unknown reasons (e.g., subjects with a bad reaction drop out more, and 
 there are more bad reactions in the treatment group) there is no unbiased data recovery 
 method. 

 5.  Stopping criteria  : Either the number of subjects is  calculated ahead of time (using a 
 power analysis) or there is a well-defined procedure for deciding when to stop recruiting 
 new subjects. This is so experimenters won’t keep the experiment going until the results 
 start looking good and then decide to stop, exaggerating the benefit. 

 6.  Early stopping criteria  : If preliminary results show  a strong treatment benefit, 
 experimenters may feel ethically obligated to stop and give the treatment to the entire 
 population. Alternatively, if the treatment group fares worse than the control group, they 
 may feel obligated to abort the trial altogether. This ethical obligation to the subjects 
 must be balanced against the potential harm of publishing a truncated study, which might 
 overestimate the treatment's effect. 

 7.  Pair-matching  : The population of  n  subjects can be  divided into  n  /2 closely matched 
 pairs on baseline variables such as age, sex, weight, and economic status. Then one is 
 randomly assigned to the control group and the other to the treatment group. The 
 matching guarantees the two groups are similar for the known variables. The 
 randomization gives a good chance that they will be similar on any unknown variables. 

 8.  Restriction  : If there might be unknown confounding  variables that pair-matching would 
 miss, a study can be modified to have more homogeneous subjects. For example, many 
 studies are restricted to 18–25 year-old college students. The findings of the study will 
 be less widely applicable, but the chances for confounders will be reduced. 

 9.  Double-blinding  : Neither the subjects nor the health  workers know which group the 
 subjects are in. For example, all subjects get a shot with an identical syringe. The 
 injection is either the treatment drug or a placebo, which is not revealed to either the 
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 health workers or subjects until the end of the trial. That way, there is no preconception 
 of the expected outcome to influence the results. Double-blinding may not be feasible in 
 some trials; for example, surgical ones. 

 10.  Baseline treatment  : As proven treatments become available,  studies may substitute a 
 known, existing treatment for the control group's placebo. This is both to test the new 
 treatment's relative improvement versus the old, and because it is unethical to withhold a 
 known working treatment. 

 11.  Reversion  : In some experiments, on observing a positive  outcome in the treatment 
 group the experimenters stop giving them the treatment. They then observe that the 
 group reverts to being similar to the control group. This serves as further confirmation of 
 the treatment. Note that this would not be possible for a vaccine study, but could be used 
 in, say, an ongoing study of a weight-loss program. 

 RCTs are best known for their use in high-stakes medical studies. However, companies that do 
 A/B experimentation perform thousands of prosaic randomized controlled trials every day, as 
 described in  Section 1.2.4  . These experiments try  to answer questions such as “what font 
 causes users to click on the link more often?” or “what menu design makes it faster for users to 
 find the right command?” It is easy to randomly assign subjects and gather outcome data, so 
 these questions can be answered quickly. 

 Testing multiple factors at once (e.g., fonts, sizes, colors, and menu designs) is called 
 multivariate testing  . A  full factorial test  tries  every combination of possible choices for all the 
 variables. If there are too many combinations a  fractional  factorial test  can be used. It 
 considers only some combinations, trying to pick the ones that will yield the most information. 
 When the test is over, researchers can start to show the combination that performed best in the 
 test to every user. 

 The problem is that there can be a lot of different experimental combinations, and it takes time 
 to sort through them all. Researchers have to weigh the risk of potentially giving a small number 
 of users a temporarily worse experience against the benefits of discovering a better experience 
 for all users over a longer time. They also have to decide when the test is over; that is, when the 
 diminishing returns of more data are no longer worth continuing. 

 An alternative approach with the colorful name  multi-armed  bandit experiment  uses the 
 metaphor of a row of slot machines, each with a different, but unknown, average payoff. 
 Deciding which slot machine to play next is like deciding which experimental condition to try 
 next; in each case you may get a payoff, and you gain some information about the payoff rate. 

 A good strategy is to experiment with the different machines, keeping track of the payoff rate 
 estimate for each machine and also the estimate's uncertainty. If machine  A  has an average 
 payoff of $2 per trial over 100 trials and machine  B  has an average of $1 over 80 trials, then we 
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 may want to stop trying  B  . But if machine  C  averages $1 over just 2 trials, then there is a good 
 chance that the estimate is faulty and  C  might actually  pay off more than $2 on average. We 
 should try  C  some more to check. We can do a calculation  so that on each trial we choose the 
 machine that maximizes the sum of the machine’s current expected payout plus the value of 
 information of getting a more precise payout estimate and later using that information. 

 Online services such as Amazon SageMaker RL, Optimizely Web Experimentation, and Google 
 Optimize make it easy to automatically run multi-armed bandit experiments and see reports on 
 the results. 

 On the other hand, too much experimentation can lead to disappointment. Suppose a company 
 has a new algorithm to improve their spelling-correction program. They run experiments with 30 
 slightly-different algorithm versions, and find that the best improves performance by 4%. They 
 launch that version and monitor its performance, only to find it actually only improves 
 performance by a disappointing 2%. What went wrong? In a similar case at Google, researchers 
 observed this phenomenon early on and recognized it as some form of regression to the mean. 
 It took a while to understand the problem well enough to be able to predict the precise amount 
 of disappointment (i.e., lesser performance improvement). 

 In statistical language, the problem is that the expectation of the maximum is not equal to the 
 maximum of the expectations. In plain language, the problem is called the  optimizer’s curse  . 
 The chosen version was judged best in part because it really was a good version, but also in 
 part because of random variation in the experiment. The lesson is that as more versions are 
 tried, the best version's results will tend to improve, but also the disappointment of the actual 
 results versus the expected results will be greater. One way to control for this is to use a 
 Bayesian calculation to correct the estimated improvement.  280 

 Randomized controlled trials are the gold standard, but they can be expensive and 
 time-consuming. Sometimes an RCT is completely impractical or unethical. We can’t randomly 
 split subjects into two groups, and tell one group to smoke a pack of cigarettes every day and 
 the other to abstain. Fortunately, data collected for other purposes can sometimes be used to 
 derive a causal model. It is often considered the genius of data science that data acquired from 
 normal activity, rather than a planned experiment, can yield useful results. 

 When an RCT is not feasible, one alternative is a  single-subject experiment  , in which each 
 subject is both given a treatment and serves as a control, but at different times. These are 
 popular in education studies. You can't take two classrooms and tell one "we're not going to 
 teach you to read." But you can teach different things to each classroom at different times of the 
 year, and measure performance at regular time intervals. In effect, each student serves as their 
 own control group. 

 Another alternative is an  observational study  ,  in  which we gather and analyze data but don't 
 assign subjects to groups. Suppose we want to determine the extent to which affordable 
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 low-income housing positively affects families. We can't assign families to a control and 
 treatment group. However, we could take existing data and select matched pairs of similar 
 families, one that received the treatment and one that did not, and observe the outcome 
 variables. This approach could be used for some of the studies described in  Section 5.5  . 

 The problem is that even if the two groups are balanced on observable variables (e.g., number 
 of children, age, previous year’s income), they might systematically differ on unobserved 
 variables. Perhaps families who are resourceful enough to seek out affordable housing 
 assistance were also resourceful in other ways, giving them improved outcome measures. 

 To get around this problem, we look for a  natural  experiment  (also called a  quasi-experiment  ) 
 that partitions groups similarly to an RCT. Suppose there is a lottery for affordable housing slots. 
 All applicants demonstrate an equal level of resourcefulness by virtue of entering the lottery, and 
 the winners are chosen at random. Comparing the winners and losers' outcomes is almost like 
 an RCT. 

 Policy changes enable other natural experiments. If two nearby cities have similar 
 demographics, and one institutes a mask mandate and the other does not, they serve as 
 treatment and control group in a natural experiment. When there are many cities in the 
 no-treatment category, a statistical technique called the  synthetic control method  281  is a 
 principled way of choosing a balanced control group. 

 Another type of natural experiment,  regression discontinuity  analysis  ,  282  occurs when a 
 policy imposes an arbitrary treatment cutoff point on a continuous-valued variable. Suppose a 
 state enacts a new law offering housing assistance to any family with an income under $30,000. 
 A family making $20,000 receives the “treatment” of assistance, and a family making $200,000 
 does not. These families will have many differences, so tracking their outcomes won't tell us 
 much about the asistance's causal effect. But, on average, families making $29,000 are 
 probably very similar to families making $31,000, except for the assistance. So a trial 
 considering only families who fall just below or just above the cutoff point is almost like an RCT. 

 In another example, researchers wanted to understand the effects of alcohol purchases on 
 motor vehicle accidents.  283  They couldn’t assign people  to two groups–this one buys alcohol and 
 this one doesn't. But they could compare New Mexico drivers before and after July 1, 1995, 
 when it became legal to buy alcohol on Sundays there. After that date, fatal crashes on 
 Sundays increased by 42%. While there may be confounding variables that also changed on or 
 about July 1, 1995, this is strong evidence of a causal link between alcohol purchase and fatal 
 crashes. Regression discontinuity analysis has also been used to study the causal effects of 
 school classroom size, unionization, anti-discrimination laws, limits on unemployment insurance, 
 and many other factors.  284 

 We conclude this section by discussing two complex topics: global warming and hormone 
 replacement therapy. 
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 RCTs cannot investigate anthropogenic global warming, because we only have one planet and 
 can’t split it into two groups. It is easy to observe a correlation between temperature and 
 increasing greenhouse gas levels. However, it took a long time to gather enough data and do 
 enough analysis to create a convincing causal model that can answer a wide range of 
 questions. 

 Historically, does climate respond to gas levels rather than the other way? Yes, as demonstrated 
 by ice cores from Greenland and Antarctica. Why has the lower stratosphere cooled since 
 1979? That is largely attributable to major volcanic eruptions, ozone depletion, and increased 
 greenhouse gasses. Could temperature be driven by solar irradiance cycles? Irradiance was 
 largely aligned with temperature from 1880 to 1950, but since then it has declined while global 
 temperatures increased. There are still a few skeptics unswayed by the evidence. In this 
 instance, data science can motivate and assist in the debate, but not settle it. 

 Hormone replacement therapy for post-menopausal women is probably the best real-world, 
 medical example of the difficulties of determining causal relationships. A careful, long-term 
 retrospective study showed that estrogen replacement therapy did lower the risk of heart 
 disease in postmenopausal women on whom data was collected. The conclusion seemed to 
 make sense. First, it seemed plausible that a change in estrogen could be implicated in 
 post-menopausal heart disease. Second, the data showed that women who had estrogen 
 replacement did indeed have fewer heart problems. 

 But numerous later studies, including prospective ones, had different results. Perhaps, in the 
 initial study there was a correlation between women who took hormone replacement and a 
 group who did other somehow protective things? The evidence remains somewhat 
 contradictory, but doctors no longer recommend hormone replacement therapy to reduce heart 
 disease. This is illustrative of data science's risks, and the advantages of prospective studies. 
 Randomly dividing a population into groups and treating the groups differently greatly reduces 
 the risk of confounders. 

 There are many more examples of where prospective studies fall short, but most of us have 
 noticed that dietary recommendations have a history of contradictory advice. One study claims 
 that coffee or eggs or wine is beneficial in moderation, and the next study will claim it is harmful. 

 11.2.2  Variable Selection for Causal Inference 

 One of the biggest problems in ascertaining causality is the combination of the sheer number of 
 possible causal variables and the expense of running randomized experiments on each of them. 
 As a concrete example, we return to the Genome-Wide Association Studies, discussed in 
 Section 6.3  , which aim to discover which mutations  cause a particular disease. Given a specific 
 mutation, scientists often can perform an individual randomized experiment to test a mutation’s 
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 effect on biological processes. However, running millions of experiments on many different 
 mutations is prohibitively expensive. 

 Another example involves detecting  heterogeneous treatment  effects  in clinical trials. This 
 means finding out when a treatment works better or worse for certain people. For example, 
 pharmaceutical companies may want to know if a drug is more or less effective for certain 
 subpopulations. However, to prove such claims to regulators, researchers need to specify the 
 particular subpopulations before running a clinical trial, and there are millions of possible 
 subpopulations. A particular drug may be more effective based on a subject’s gender, weight, 
 age, or other combination of demographic factors. While we have provided biomedical 
 examples, this is a problem in many other domains. 

 All of these examples help motivate an important problem. Before running lab tests or 
 randomized experiments, it is often necessary to  pre-screen  potential causal hypotheses to 
 identify likely causal factors. Such pre-screening is often known as  variable selection  .  After 
 selecting relevant variables, domain experts may then run a randomized experiment to verify 
 that the selected variables are causally important. For example, in GWAS, variable selection 
 techniques let researchers sift through millions of mutations to find a few key seemingly causal 
 mutations. When done well, variable selection methods reduce the cost of identifying causal 
 factors by many orders of magnitude. 

 The success of variable selection methods depends on the precise criterion for “selection.” For 
 example, GWAS' initial techniques screened for mutations highly correlated with a disease of 
 interest. While very computationally efficient and privacy preserving, it can also lead to many 
 false positives and wasted resources. 

 Modern approaches apply more stringent standards.  285  One approach is to select mutations if 
 still correlated with a disease even after accounting for all of the other mutations as possible 
 confounders. A mutation giving unique information about a disease is not a guarantee it  causes 
 the disease. However, in the context of genetic analyses, it is likely as there is a low probability 
 of reverse causality as the disease is unlikely to cause the mutation. By accounting for all other 
 mutations, variable selection methods account for a huge number of potential cofounders. As a 
 result, biologists may have a strong hunch that these GWAS selected mutations have some 
 causal effect. In some fields, depending on the context and expert knowledge, RCT experiments 
 may not be required to verify causal findings. 

 Biologists, statisticians, and computer scientists have developed a wealth of variable selection 
 methods. Many methods simply fit a linear regression between potential causal variables and 
 the outcome of interest.  286  Some modern methods flexibly  incorporate arbitrary machine 
 learning models while still provably controlling the false positive rate.  287  Other methods leverage 
 the many causal variables, along with unsupervised machine learning, to learn about and 
 correct for some of the confounders.  288 
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 Variable selection methods are a useful tool throughout data science. They aid in interpreting 
 complex machine learning models as well as improving their predictive performance. They are 
 not a panacea, and their causality determinations cannot be confirmed without explicit 
 interventions. 

 11.3. Reproducibility in Scientific Applications 

 Science makes progress by formulating theories and verifying them by analyzing experimental 
 data. But the scientific community won’t accept a theory based on just one scientist’s say-so. As 
 Robert Boyle argued in the 17th century, others should reproduce experiments to have the 
 opportunity to uncover errors and thus generate confidence.  289  Or as The Economist wrote in 
 2013, “A simple idea underpins science: ‘trust, but verify’. Results should always be subject to 
 challenge from experiment.”  290 

 Unfortunately, many published scientific studies fail to replicate successfully for reasons 
 including:  291,292 

 ●  The heterogeneity of subjects (especially in the biological and social sciences).  293  A 
 study may reach the conclusion that a drug is an effective treatment for a disease, but a 
 replication study may draw subjects from a different population that responds differently 
 to the drug. Not everyone is alike. 

 ●  The unprecedented rise in available data, the relative ease of doing studies, and the 
 convenience of a wide variety of statistical tools, making it more likely that  some  analysis 
 of the data will yield a finding that appears to be statistically significant. 

 ●  The expansion of science into subject areas where there are thousands of potential 
 hypotheses, some of which will yield false positives. For example, gene chips contain 
 hundreds of thousands of cells, and can use them to simultaneously run experiments on 
 thousands of genes. 

 ●  A preference by journals for novel findings, and a lack of insistence on robust 
 experimental design and validation. Experiments would be more likely to replicate if 
 journals required pre-registration of experiments, larger sample sizes, and smaller 
 (stricter)  p  -values. Many experiments are designed  to have statistical power of just 80%, 
 meaning that they leave a 20% chance that a true effect will not be detected. If the 
 experiment is replicated with an independent identical setup, there will be an 80% × 80% 
 = 64% chance that both experiments detect the effect with a significant  p  -value, but a 2 × 
 20% × 80% = 32% chance that one will and one won’t (and a 4% chance that they will 
 both miss it). 

 ●  The ever-present competition for researchers to publish or perish. 

 This has been called a “replication crisis,” but others say that the important and interesting 
 findings do replicate, and it is only the minor findings for which there is uncertainty.  294 
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 Not all data science uses demand reproducibility. A product manager whose data science 
 application met its user satisfaction goals need not do additional experiments to prove or 
 disprove its broader usefulness. A company making movie recommendations isn’t proposing a 
 scientific theory of the best recommendations. They are merely saying these are  our 
 recommendations: take them or leave them. 

 But when data scientists act like scientists–creating predictive models, generating hypotheses, 
 and determining underlying causal mechanisms–confidence in their conclusions matters greatly. 
 They have the same need for reproducibility as other scientists. A model's initial proposers 
 should clearly and comprehensively explain its details, their data, their experiment, their 
 assumptions, and their results. (See  Section 11.4.2  for more on this.) They should strive to 
 inspire others to replicate, validate, and extend their work.  58 

 This is not always easy. Some companies want to maintain a competitive advantage by keeping 
 their datasets and/or software as trade secrets. Even when the software is freely shared, 
 software packages undergo frequent updates and it may be hard to exactly replicate the original 
 versions. Data science is often a trial and error process; a “garden of forking paths,”  295  so it is 
 not clear exactly what it means to replicate a study. Do data scientists replicate the final 
 procedure arrived at by the original authors? Or do they instead follow the original process, 
 perhaps making different choices because the world and available data have changed? 

 Many factors can prevent replication. It could be the cost as some computations require a 
 prohibitively large hardware investment. Some data requires licensing fees, or the size is so 
 large that transmission to another team is expensive. In the future, this could be mitigated if we 
 shared data and software in a globally accessible, cloud-based file system with access controls, 
 but this is not the case today. 

 Often a dataset cannot be shared for privacy reasons. Clearly this is true for medical and 
 census information. Additionally, companies can offer to share data only to those who agree to 
 strict terms of usage, but they can be violated. In retrospect we see that Facebook erred in 2014 
 when they relied on a contractual commitment. They allowed academic researcher Aleksandr 
 Kogan to build an app that gathered personal data. The data was then acquired by Cambridge 
 Analytica, which improperly used it to build voter profiles for the 2016 election.  296  Companies 
 can take steps to anonymize or aggregate data before release (see  Section 10.1  ), but there 
 may be no solution that provides enough data to allow replication while preserving privacy. 

 Releasing information about a model might give attackers a way to abuse it. As an example, if 
 political opinion pollsters released their complete methodology – the web sites they track, the 
 locations where they survey potential voters – political candidates would concentrate their 
 efforts on targeting exactly those web sites and locations. The data would no longer reflect the 
 broader population. 
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 A dataset may be so large and complex that it is difficult to understand and process, particularly 
 after undergoing extensive data wrangling. For example, multi-site medical studies may need 
 meticulous pre-processing to make their data compatible since providers use many different 
 encodings. All these details need to be clearly described if we are to validate and understand 
 our data science results. The World Health Organization advertises the ICD-11 (International 
 Statistical Classification of Diseases and Related Health Problems) standard as having “17,000 
 categories, 80,000 concepts, 130,000 terms, >1.6 million clinical terms interpreted”!  297 

 We finish with two examples of the tradeoff between privacy and reproducibility. 

 Co-author Alfred had many uncomfortable experiences explaining why Google would not 
 release search logs and other data to universities for research use. It became second nature to 
 recite the list of reasons: the distribution costs and challenges, anonymization difficulties, the 
 reputational risk due to a suspicious public not accepting privacy assurances, the risk of a 
 malicious or inadvertent data leak, the economic value of the data, and cautionary experiences 
 from companies that released data and saw a negative result. While keeping the data private 
 appears to have been the right decision, the scientific community lost the opportunity to reap the 
 potential benefits of using it for research. 

 Google Flu Trends was a service launched in 2008 that created a map of flu prevalence in 
 different areas based on the frequency of certain search terms. Epidemiologists continually 
 pressed Google to release the methodology and raw data for external validation. Google 
 decided not to for two reasons: 

 1.  The raw search data absolutely could not be released because it was private. 
 2.  If the key search terms were known, abusers could spam the system with these 

 searches and distort the data. 

 Eventually, Google found a way to release aggregate search data to scientists, but it was not 
 enough to provide for reproducible system validation. Maintenance of the service proved to be 
 difficult. Also, over time users changed their habits, for example, getting an increasing amount of 
 their information on local trends from Twitter rather than from Google searches. In 2015 the Flu 
 Trends service shut down because it no longer met its goals. 

 These issues are not unique to Flu Trends. Scientific theories about human behavior are more 
 ephemeral than theories about physics or chemistry. Theories such as  F  =  ma  or  E  =  mc  2  have 
 stood the test of time, but human preferences are fickle. 

 In summary, scientific theories need to be reproduced to be believed. Theories arrived at 
 through large data science experiments face challenges of privacy, software and data 
 availability, replication complexity and cost, and abuse potential. On the other hand, many 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  162 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 internal uses of data science applications by an organization justify themselves by their 
 success, without needing to prove anything to the outside world. 

 11.4. Communicating Data Science Results 

 Portraying data in perspective is of particular importance. For example, with vast data collection, 
 it is easy to locate and highlight outliers and make unsound arguments based on them. 
 Erroneous, incomplete, one-sided, or misrepresented data can lead to misunderstanding and 
 confusion. Data scientists must always be cognizant of the power of data, because humans 
 tend to attribute great validity to a number, a graph, or a model output, and be overly confident 
 of conclusions. It is hard to express ambiguity, and it is relatively uncommon to do it well.  298 

 A major challenge for both the data science community and the public at large is the ease with 
 which insights, conclusions, or data, whether truthful, misleading, or downright erroneous can 
 widely propagate. The marginal cost of publication is near zero, so almost anyone can create a 
 tweet, blog, chart, database, or video and then publicize it. 

 Previous barriers, such as finding a publisher, passing an editorial bar, or paying for printing and 
 postage, are gone. Tools make it quite easy to create deceptive derivatives, such as the deep 
 fakes discussed in  Section 10.3  . The internet’s long  support for anonymity increases the 
 likelihood of deliberate falsehoods, by reducing both data creators' responsibility and the 
 likelihood of detecting and punishing bad actors. This problem further illustrates the delicate 
 balance needed between providing privacy and preventing abuse, as previously mentioned in 
 Section 10.1  . These problems have grown larger as  the internet's ever-growing use and reach 
 adds to the motivations for abuse. 

 Data can appear to have a veneer of objectiveness and certainty that is not always warranted. 
 When presenting results, practitioners must be careful to include contextual information, such as 
 the size of a sampled population, the method of collecting data, and the resulting uncertainty 
 (e.g. error bars) in the results. The tools that simplify data analysis and visualizations can be 
 problematic if not used with care. Programs from Tableau Software (now acquired by 
 Salesforce), SAP, and Microsoft make it easy to do analysis and create visualizations that are so 
 compelling, audiences may see the numbers and ignore the uncertainty around them. 

 For example, it is easy to show the breakdown of students in elite colleges stratified by parental 
 wealth or high school attended, but it is hard to draw conclusions as to the reasons behind the 
 data. Similarly, we frequently read that those individuals who exercise live longer, but rarely is 
 there a discussion that those already in better health are likelier to exercise. If done well, 
 measuring and reporting is illuminating, but it also can easily inspire disagreement and shed 
 more heat than light. 

 Internet search engines allow anyone to find information on any topic. However, some of the 
 information may be out of date, or come from an unreliable source, or represent a biased point 
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 of view. Searchers need to take care to avoid cherry-picking just the results they would like to 
 see, rather than getting the full story. Everyone is subject to cognitive biases that influence how 
 we react to data. For example, 

 ●  Availability bias  means that people rely on examples  that come readily to mind when 
 evaluating a situation. For example, when asked about the likelihood of various causes 
 of death, people overestimate the risk of shark attacks and homicide, which are rarer 
 than other causes, but receive a great deal of coverage in the news.  299 

 ●  Recency bias  means that people give greater credence  to events they heard of recently. 
 This is why constantly repeating yourself can be an effective strategy. Lists of the 
 greatest movies/athletes/musicians of all time are often dominated by contemporary 
 entries because of recency bias.  300 

 ●  Confirmation bias  means that people tend to search  for and interpret information in 
 ways consistent with what they already believe or want to prove true, and ignore 
 evidence contradicting their prior beliefs.  301 

 Remembering these biases is important for those planning to communicate or consume 
 analyses based on data. We cover additional biases in  Section 11.4.4  . 

 Finally, we note that computer programs (or bots), masquerading as humans, can contribute 
 misinformation. For example, Twitter bots frequently retweet political messages, in order to give 
 those messages undue credence. With automation, the adage of “garbage in leading to garbage 
 out” becomes even more problematic. 

 11.4.1 Examples 

 More recently, individuals have had to decide if they would accept COVID-19 vaccines. The 
 incredibly detailed record keeping on side effects, occasional adverse reactions and occasional 
 inefficacy highlighted outlier cases. This both reinforced anti-vaxers' opinions and even created 
 sufficient controversy to reduce the rate of vaccinations. 

 Quantitative researchers, elected officials, and data journalists all rely on statistics to help inform 
 decisions and estimate risks. However, abundant research by computer scientists and 
 behavioral economists has shown how presenting the same fact expressed differently, or with 
 and without perspectives, can have a significant effect on the way readers interpret the same 
 fact. As one example, blood clotting was linked to 73 deaths in the UK among people who 
 received the AstraZeneca vaccine. Presented this way, without a denominator, “73 deaths” 
 seemed like a lot and contributed to vaccine hesitancy. 

 However, 73 deaths out of 50 million doses of the vaccine in the UK  302  is just 1.46 micromorts, 
 to use the terminology popularized by statistician David Spiegelhalter.  303  The average person 
 faces a threat of 24 micromorts from other causes every single day, so the vaccine poses at 
 most a small additional threat. Studies showed that overall, despite the clotting issue, those 
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 taking the vaccine actually had lower rates of non-COVID mortality than the unvaccinated.  304 

 And the rate of COVID mortality is about 50 times lower for the vaccinated versus the 
 unvaccinated.  305 

 Presenting a number without any perspective, such as neglecting to include a denominator or a 
 comparable number, can contribute to misunderstandings even while presenting something 
 factually sound. The lack of a denominator is called "denominator neglect," which psychologist 
 Gerd Gigerenzer and colleagues define as "the focus on the number of times a target event has 
 happened … without considering the overall number of opportunities for it to happen."  306 

 Similarly, researchers from Microsoft and Columbia have shown experimentally how different 
 choices of perspectives – comparing one number to another – can improve reader 
 understanding  307  of numerical measurements from front  page articles in The New York Times. 
 Crowd-sourcing both the generation and the scoring of "perspectives," they tested the effect of 
 adding, for example, the perspective "300 million firearms is about 1 firearm for every person in 
 the United States" to the factual but less contextual "Americans own almost 300 million 
 firearms." Such perspectives were shown to improve both recall, estimation, and error detection 
 among readers. 

 At a minimum, data scientists must ensure relevant information on population sizes (i.e., the 
 denominator) is well known and use presentation tools to tell the right story. This lets others 
 assess probabilities and helps the public compare one risk against others. Having identified a 
 problem, data scientists must also guard against their own natural tendency to make a forceful 
 statement instead of being extremely rigorous and balanced. They must also recognize that 
 most people are unlikely to understand statistics very well. 

 In the run-up to the 2016 US Presidential election, many cable news channels incessantly 
 focused on post-presidential debate  poll results.  At times, there seemed to be almost no 
 discussion about candidate experience, policy, or truthfulness. Political polling has been an 
 industry since the 1950’s.  308  But modern data science  makes it so easy to gather, process, and 
 present data that news coverage can skew towards shallow polls, rather than matters of deeper 
 substance. 

 Certainly, we can all be taken in by leaderboards and statistics, so perhaps this data science 
 application has led to some modern opiate of the masses. Even within organizations, polling 
 ability has grown so rapidly that it can be a crutch replacing leadership and creativity. This 
 example is one of many showing that data doesn’t necessarily generate understanding. 

 11.4.2 The Role of Scientists 

 Scientists play a formative role in generating and disseminating new knowledge and have a 
 particular duty to use data science carefully. In particular, they must be aware of the esteem the 
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 public holds in them. Polling shows that scientists, along with the military, are the most-trusted 
 groups, beating out financial institutions, the press, and politicians.  309 

 Thus, scientists must be exceedingly careful in both drawing and expressing conclusions from 
 data science. The uncertainty that frequently arises from its application makes communication 
 particularly challenging, as summarized in a survey by Bles et al.  310  While scientists and their 
 institutions desire fast publication and credit for great ideas, they must exercise caution. 

 First, scientists need to use language that will not be misunderstood. For example, when a 
 scientist asserts that something “may imply” something else, or they “hypothesize” something as 
 true, the public may not understand that this means there is some uncertainty in the data, and 
 may interpret it as meaning the result is definitely true. Alternatively, some members of the 
 public might interpret the uncertainty as meaning it is definitely false. It is a great challenge for 
 scientists and their institutions to help the press and public understand the shades of meaning 
 and degree of uncertainty in their work. 

 Second, although scientists strive to be objective, they often have a preferred hypothesis and 
 would rather prove its validity than negate it, making them subject to confirmation bias. It is 
 tempting to ask the question that gives the answer you want, not the answer that is most 
 revealing of the truth. In 1987, John Cannell surveyed the results of school testing and found 
 that 50 out of 50 US states reported their children were above average.  311  He called this the 
 "Lake Wobegon Effect." 

 How was it achieved? First, it turns out that when a state contracts to have its students take a 
 standardized test, they also purchase rights to the scores of a "comparison group," and test 
 vendors compete on just how low a comparison group they can offer. 

 Second, in many cases the teachers, who were more invested in seeing their students score 
 well than in accurately assessing their performance, drilled the students using last year’s test 
 questions, and the test did not change from year to year. They were guilty of training on the 
 testing data. 

 Third, scientists must remember that correlation should not substitute for causation, particularly 
 given the previously mentioned risk of confirmation bias. 

 Fourth, scientists must realize that journals have a bias towards publishing studies that produce 
 affirmative results. A scientist might reference a positive study result without knowing of the 
 many unpublished results tending to negate it. Published meta-analysis studies are also 
 vulnerable to this problem. Policy efforts are underway to partially rectify this, such as the 
 operation of the  ClinicalTrials.gov  website,  312  which  aims to record all clinical trials whether or 
 not they were successful. 
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 Fifth, scientists need to be clear about where their hypotheses came from, and apply statistical 
 techniques that are appropriate to the hypotheses’ origin. 

 A long-standing practice in statistics, going back to the work of R. A. Fisher in the 1930s,  15  is to 
 summarize experimental results with a  p  -value. This  says how likely it is that an experiment 
 would obtain results at least as extreme as those observed, under the null hypothesis that there 
 is no difference between the control group and the treatment group. 

 In the social sciences, experimenters look for  p  <  0.05, which ensures that there is only a 1 in 20 
 chance of making a false discovery under the assumption that there is no difference between 
 the treatment and control groups. Physical sciences often look for the stricter  p  < 0.01, and 
 confirming a new elementary particle requires  p  <  0.0000003. The use of  p  -values came into 
 practice in an era when an experiment was typically used to test a single hypothesis that was 
 reasonably likely to be true. 

 However, data science techniques now enable the generation of hypotheses at unprecedented 
 scale. Biologists run experiments on 20,000 genes in parallel on a gene chip–in effect making 
 20,000 hypotheses at once. Suppose a gene chip experiment's results suggest two particular 
 genes are associated with a disease, each with an individual statistical  p  -value of 0.0001. In a 
 traditional experiment, a  p  -value of 0.0001 is considered  strong and evidence the null 
 hypothesis (no association) is false. But in the gene chip experiment, two out of 20,000 genes 
 could reach the 0.0001 level just due to random noise. Instead of rejoicing at finding a 
 significant  p  -value result, the scientist in this  scenario should apply an appropriate statistical 
 technique such as t  he Bonferroni correction, or should  treat the two positive results of the gene 
 chip test as suggesting two new hypotheses that need to be tested in  a follow-up experiment. 

 The inappropriate use of  p  -values is known as  p-hacking  or  data dredging  or  data fishing  or 
 HARKing  (Hypothesizing After Results are Known). 

 Some critics argue researchers should supplement, or even replace,  p  -values with confidence 
 intervals and fragility indexes. Researchers should use robust estimation techniques to mitigate 
 against unusual probability distributions and outliers in the data. 

 Sixth, scientists need to be clear and consistent about what caused their experiment to end.  A 
 separate path to  p  -hacking lies in the previously  mentioned “garden of forking paths.”  295  This is 
 the innumerable small changes in data collection, data preprocessing, data analysis, and other 
 subjective design choices in an experiment. Suppose a researcher has the hypothesis that a 
 certain coin is more likely to come up tails than heads when flipped. The researcher flips it 100 
 times, records the results, and finds that the hypothesis is not confirmed. The researcher then 
 thinks “perhaps I didn’t collect enough data” and flips some more. Assuming the coin is in fact 
 completely fair, eventually there will be a time when significantly more tails than heads are 
 recorded, but that’s only because the researcher chose the stopping point. More subtle versions 
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 of this problem occur even when researchers are well intentioned and not deliberately trying to 
 be deceptive. Gelman and Loken further describe the paths to abusing the "  p  <.05" 
 heuristic.  295,313 

 11.4.3 The Role of Journalists 

 The press and journalism play a critical role in informing the public and influencing society. In 
 1787, Edmund Burke emphasized the importance of the press, referring to it as  The Fourth 
 Estate  , assigning the press a power similar to that  wielded by the Church, the Nobility, and the 
 Townspeople.  314  In the US, the term has come to mean  the independent body that balances the 
 three branches of government. Unfortunately, at a time when trustworthy journalism is sorely 
 needed, the “public [holds] a deep suspicion of the press,” according to The Trust Project.  315 

 Data science provides both opportunities and challenges for improvement. Journalists have 
 ever more information available to them, including fine-grained data on human beliefs, actions 
 and processes of all forms. Data science-powered search engines, social networks, and new 
 communication channels reduce the difficulty of finding that information, though they also 
 influence society in new ways that journalists must seek to understand. Analytical tools provide 
 journalists with powerful capabilities to help them counterbalance those who may wish to bend a 
 narrative to suit their own needs. Data science tools increase the speed at which journalists can 
 operate, but they also enable competitors that pressure journalists to publish ever more quickly. 
 Graphical tools empower journalists to convey information more clearly, if used well. 

 The abundance of easily available online information increases the possibility of finding 
 misleading statistics that misrepresent a complex story. Search engines return such a diversity 
 of online opinions and interpretations that journalists, if fixated on advocating for a position, will 
 almost surely be able to find supporting evidence. 

 The specific availability of fine-grained data also bears risks. Journalists share many of  Chapter 
 8  ’s challenges in processing the data they receive.  They must avoid having the cognitive biases 
 described at the beginning and end of this chapter; remember that correlation does not imply 
 causation; and always put data in context. 

 Joseph Pulitzer, founder of Columbia’s College of Journalism, addressed both data’s allures and 
 risks in a 1904 piece that remains relevant today, “It is said that nothing lies like figures – except 
 facts. You want statistics to tell you the truth. You can find truth there if you know how to get at it, 
 and romance, human interest, humor and fascinating revelations as well. The journalist must 
 know how to find all these things – truth, of course, first. His figures must bear examination.” 
 The web has exacerbated these risks, and we refer the reader to educational texts and the 
 BBC’s excellent list of guidelines to avoid so doing.  316–319 

 To address the volume of both information and misinformation and perform thoughtful analyses, 
 journalists are increasingly learning to use advanced analytical tools in data journalism classes. 
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 Data science education also helps journalists to understand the impact of data science-driven 
 applications on society. According to Journalism Professor Mark Hansen, “Data, Code, and 
 Algorithms and all manner of computing technology wield real power in our society and 
 journalists need to see and then interrogate that power.”  320 

 Twitter, 24-hour cable news, and other sources have forced journalists to contend with the 
 relentless time pressure of a 24×7 news cycle that values timeliness. The enormous shift of 
 news to the web has also provided a variety of nearly instantaneous, web-based performance 
 metrics that add to the pressure on journalists and their editors.  321  These incentives may cause 
 journalists and editors to balance the types of competing objectives that we discuss in the next 
 chapter. 

 The graphics that journalists can use are packed with power. Some newsrooms even develop 
 their own visualization software to help them quickly produce creative charts. However, using 
 voluminous data to illustrate meaningful information and compelling conclusions is still 
 challenging. Visual data journalist Sarah Leo states on The Economist's blog that presenting 
 data in a misleading way is “the worst of crimes in data visualization.” She further notes that, 
 “We never do this on purpose. But it does happen every now and then.”  322  While there is an 
 explosion of new techniques for analysis, presentation, and dissemination, they require 
 extremely careful use. Leo’s self-critical piece is a service to her profession and provides 
 instructive examples to advance quality visualization. 

 In the Summer of 2021, COVID-19 Pandemic coverage illustrated these challenges. After more 
 than a year and with vast amounts of data, there should have been consistent, easily 
 accessible, data on the pandemic's health impact. But, it was maddeningly difficult to draw 
 conclusions from popular media which had (mainly) two different approaches to gathering and 
 reporting data: 

 ●  Some reporting used official COVID-19 data,  as reported  by governmental bodies  . While 
 there was a lot of it, it was challenging to interpret. Different governments had widely 
 varying standards of measurement and accuracy as well as differing capabilities and 
 desires to be truthful. Even within a region, data was not comparable over time because 
 the quality of disease and mortality counting varied dramatically. For example, many 
 areas vastly undercounted COVID-19 cases due to a shortage of tests and testing sites. 

 ●  Some reporting was based on the number of excess deaths (the number of deaths 
 during the COVID-19 pandemic compared to those in previous periods).  323  Reports also 
 estimated infection rates not based on government data, but rather using 
 sero-prevalence surveys and working backward from deaths. While this data had many 
 advantages, there were risks similar to those discussed in  Section 8.4  relating to data 
 quality and the statistical techniques used to infer infection rates. 

 Depending on the data used, readers got very different ideas of what transpired: 
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 ●  The Economist’s tables used the “excess” deaths methodology for reporting COVID-19 
 mortality rates.  323  For example, they showed Russian  mortality rates through Spring of 
 2021 to be about 4 times what Russia reported, or about twice that of the United States 
 as of that time. Were one to have looked only at the official COVID-19 death numbers, 
 they would have shown the reverse – the United States then reported two-fold worse 
 outcomes than Russia. Reports presenting the official COVID-19 death data were in a 
 sense “accurate,” but more nuanced reporting of excess deaths provided better 
 information to readers.  F  ,324 21

 ●  As the pandemic continued, some journalists moved away from data unadjusted for 
 early disease undercounting. Initially, reports of the US summer 2020 COVID-19 
 resurgence showed it as higher than the initial spike, but The Economist, using 
 sero-prevalence and mortality data showed the reverse. 

 Superb visualizations sometimes compounded the problems of understanding. Their 
 professionalism and precision-made data appear more meaningful than it actually was and 
 encouraged unwarranted comparisons. Perhaps, unsurprisingly, even in late 2021, there were 
 still problems with COVID-19 data. US vaccination data may have been miscalculated, and that 
 required us to modify the data insight example in  Section 1.1.1  . 

 It is important to note that differences in data portrayal are not only of academic interest. These 
 data presentations and visualizations inform both policy makers and electorates. Without careful 
 reconciliation and analysis, COVID-19 reporting could excessively divide an electorate based on 
 which news they read. 

 11.4.4 The Role of Information Consumers 

 This chapter described the challenges of clearly conveying information–a challenge for the 
 scientists who do experiments, the data scientists who analyze and present the results of the 
 experiments, and the journalists who report on them. Consumers of information are also 
 challenged to think clearly, apply basic numerical and statistical literacy, and put the information 
 into context. Consumers need to question the motivations and biases of the sources providing 
 them with data and analyses of data, and to acknowledge their own human biases and frailties. 

 With practice, we can learn to counter our biases, to come to a more thorough and accurate 
 understanding of the data and information that is presented to us, and to make better decisions. 
 In high-stakes scenarios such as stock trading and military operations, training with simulations 
 has been shown to improve decision-making and mitigate biases. 

 At the start of this chapter we mentioned  availability  ,  recency  , and  confirmation  bias  and in 
 Section 8.4  we covered  selection bias  . These may seem  like topics in cognitive science, not 
 data science, but an awareness of them and the other cognitive biases and fallacies listed 

 21  December 2021 reported numbers continued to show a wide disparity. 
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 below is actually crucial to the success of data science. No matter how comprehensive the data, 
 no matter how accurate the analysis, it all goes for naught if stakeholder biases cause them to 
 reject the findings. Here are some biases that data scientists need to check for their own 
 reasoning and for that of their audience: 

 1.  Framing bias:  People react differently when different  words are used to describe the 
 same thing. For example, people support a program that is described as resulting in 
 90% employment, but oppose the same program when it is described as resulting in 
 10% unemployment.  325 

 To mitigate this bias, consider different ways of thinking about the problem, and ask for 
 advice from experts in the field. 

 2.  Anchoring bias:  People often fixate on the first number  they see. Stores take 
 advantage of this by advertising discounts: “was $10; now $5.” They do that because 
 they know that when potential buyers start to consider whether the product is worth $10, 
 they will be more likely to then decide that it must be worth $5. Restaurants put a $200 
 bottle on their wine lists, not because they expect to sell a lot of them, but because the 
 $30 bottle now seems like a bargain. 

 The anchoring number doesn’t have to be in any way relevant to the decision at hand. In 
 an experiment, subjects watched the random fall of a roulette ball into a number and 
 were then asked to estimate some quantity, such as the number of countries in Africa. 
 The higher the roulette number, the higher their guess.  326 

 To counter anchoring bias, do research to set your own anchor point, and take your time 
 making a decision; the power of an anchor diminishes over time. 

 3.  Base rate fallacy:  Suppose a patient undergoes a routine  screening and tests positive 
 for a disease. Separately, we know the test has a 5% false positive rate and the disease 
 affects 1 in 1000 people in the population. What is the probability that the patient actually 
 has the disease? 

 One might be tempted to say 95%, because there is only a 5% chance of a false 
 positive. This would be correct if the base rate were 1/2; a person is equally likely to 
 have or not have the disease. With a base rate of 1/1000, the correct way to reason is 
 that out of every 1000 people, 1 will have the disease and test as a true positive, but 50 
 out of the 999 who do not have the disease will be false positives, so the probability of 
 true positive given a positive test result is 1/(50 + 1) or about 2%. 
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 Table 11.1 Tabular Description of Base Rate Fallacy 

 Base rate 1/1000  Base rate 1/2 

 Diseased  Healthy  Diseased  Healthy 

 Positive test  1  50  475  25 

 Negative test  0  949  25  475 

 It is not just lay people who have difficulty reasoning about base rates; a survey of 
 medical doctors showed that only 20% of them answered this question correctly.  327 

 This is true even though doctors are taught to discount the likelihood of rare diseases; 
 Dr. Theodore Woodward coined the phrase “when you hear hoofbeats, think horses not 
 zebras.” Presenting patients with medical test results without proper education on base 
 rates can cause real harm. The New York Times  328  reports  that in prenatal screening for 
 Prader-Willi syndrome, a positive result is wrong 93% of the time. The syndrome occurs 
 once in 20,000 births, so the test is more than 99.9% accurate, but the marketing 
 material from the testing company stresses that accuracy without mentioning that most 
 positive results will be wrong. An FDA official found this “problematic.” 

 The best way to avoid base rate mistakes is to work through an example with concrete 
 numbers as was done here: imagine 1,000 (or 20,000) people, and see how many fall 
 into each category. 

 4.  Prosecutor’s fallacy  : A prosecutor argues that DNA  from the crime scene was a match 
 to the defendant, and because DNA matching has a false positive rate of only one in a 
 thousand, the jury should convict the defendant. 

 That’s a valid argument if there were two suspects apprehended at the scene of the 
 crime and the DNA evidence matches one of them. However, if the defendant was 
 brought in simply because they were the one person in a pool of thousands of DNA 
 records that happened to match, and there is no other evidence pointed towards the 
 defendant, then the argument is invalid–it is a version of the base rate fallacy. A 
 prosecutor could similarly argue that winning the lottery without cheating is a very low 
 probability event, and therefore whoever wins must have cheated. 

 5.  Lack of introspection  : We prefer machine learning  systems that can explain their 
 reasoning, but it turns out humans also have difficulty doing this. Our unconscious mind 
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 has processes that the conscious mind is unaware of. In one experiment, shoppers were 
 asked which of four products on a table they preferred. The order of the products was 
 permuted for each trial. It turned out that on each trial shoppers were four times more 
 likely to pick the product on the far right than the one on the far left. Order was the most 
 important factor in determining preference, yet not a single subject admitted to the 
 possibility that order could have anything at all to do with it.  294 

 It is difficult to counter this issue, but it is always good practice to check whether your 
 holistic first impression matches the results of your calculations. If the two approaches 
 disagree, consider why there is a conflict and try to resolve it. 

 6.  Representativeness and the Conjunction fallacy:  In  a famous experiment,  329 

 Kahneman and Tversky gave subjects the following description: “Linda is 31 years old, 
 single, outspoken, and very bright. She majored in philosophy. As a student, she was 
 deeply concerned with issues of discrimination and social justice, and also participated 
 in anti-nuclear demonstrations.” They then asked which was more likely? 

 1.  Event B: “Linda is a bank teller.” or 
 2.  Event F: “Linda is a bank teller and is active in the feminist movement.” 

 85% of subjects said  F  was more probable. But that’s  a logical impossibility; regardless 
 of any knowledge about Linda, the conjunction of the two events  B  and  F  can't be more 
 likely than the single event  B  alone. It seems that  subjects confused probability with 
 representativeness  , and chose  F  because, as a story,  it fit with the rest of Linda's 
 description better than  B  . 

 To avoid this trap, it helps to work things through quantitatively. When told “There are 
 100 people who fit the description of Linda,” and asked to estimate “How many out of 
 100 are bank tellers” and “How many out of 100 are bank tellers and active in the 
 feminist movement,” none of the subjects commit the conjunction fallacy. 

 7.  Gambler’s fallacy  : A gambler will reason “I know that  in the long run a roulette ball will 
 land on black half the time. It just landed on red five times in a row. That means that 
 black must be due next.” The fallacy is believing that independent events keep track of 
 or are influenced by their predecessors. If events are truly independent, they don’t. The 
 long run will eventually even out, but not because the short term has a proclivity to catch 
 up. 

 To avoid this fallacy, we need to think carefully about whether events are truly 
 independent. If they are, then we need only consider the next event, not previous ones. 

 8.  Sunk Cost fallacy:  A poker player who has invested  a lot of money in the pot may be 
 reluctant to fold, even though the current reading of the cards and betting indicates they 
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 are likely to lose even more by staying in. A company that has invested in an advertising 
 campaign may be reluctant to abandon it, even when data shows it is performing poorly. 

 To avoid this fallacy, remember that rational decision-making means surveying available 
 actions and considering the possible outcomes of each action and the differences 
 between them. In all possible outcomes you’ve already invested the sunk cost, so it 
 should not be a factor in a rational decision. 

 9.  Clustering Illusion  : Humans are always looking for  meaning in the world. When we 
 detect a pattern, we assume there is a reason for it. That ability to detect patterns has 
 led to all the technological advances described in this book and elsewhere, but it also 
 leads to a lot of false positives. In 2007, London’s  Sunday Times  published an article 
 titled  Cancer Clusters at Phone Masts.  There were  higher-than-normal rates of cancer 
 near 7 different mobile phone masts. Concerned residents saw this as evidence that the 
 masts were responsible for the cancers; if not, they reasoned, the cancers would be 
 spread homogeneously, not clustered. 

 But random events are not homogenous (that would be un-random), and out of 47,000 
 masts, one would expect to see 7 or more clusters by random chance. The bias to see 
 patterns is more widespread than just clusters;  pareidolia  is the phenomenon of seeing 
 familiar objects in random images, such as spotting animals in clouds or faces on slices 
 of toast. 

 10.  Appeal to Authority:  A useful shortcut in analyzing  a situation is to trust the opinions of 
 experts in the field. But we should count these opinions as evidence because they are 
 sound arguments, not solely because of the credentials of their authors. Computers are 
 often mistakenly seen as the ultimate authorities. A customer service representative may 
 say, “It seems like you have a legitimate argument, but the computer said this is the 
 answer, so there’s nothing I can do about it.” 

 To counter this bias, question authority. Don’t dismiss authority, and don’t prefer 
 uninformed opinions over informed ones, but rather weigh all the actual evidence. 

 11.  McNamara’s Fallacy and Goodhart’s Law:  Data can be  valuable, but focusing too 
 much on the data that is available to you can cause you to ignore important information 
 that is not in the data. During the Vietnam War, US Secretary of Defense Robert 
 McNamara concentrated on hard quantitative statistics (such as body counts) that 
 indicated his side was winning, but erred by ignoring qualitative assessments that gave a 
 different picture. As we said in Section 9.2, the key to finding an accurate model and 
 making good decisions “is not contained only in the data points themselves; it is also in 
 what we know about the data” including non-quantitative impressions. Another issue, 
 known as Goodhart’s Law, says that once people are aware that data is being used to 
 guide a model, the data becomes subject to manipulation: proponents and adversaries 
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 alike want the model to go their way, and may manipulate the data to get the results they 
 want.  330 

 Continuously monitor the performance of your model to see if it is tracking what you 
 really want it to track, and if it is degrading over time. Think hard about your model and 
 your decision-making process; decisions should be guided by available data and 
 models, but can also be informed by factors that are not captured in quantitative data. 

 12.  Information Cascades:  Often the initial pieces of  information have an unwarranted 
 effect on a decision, coloring subsequent information. Consider a group meeting to 
 decide whether to hire a candidate. If the first interviewer declares “the candidate is 
 cunning and highly intelligent” and the second adds “the candidate is hard-working and 
 ambitious,” the group will be forming a positive mental model of the candidate. When the 
 third says “the candidate is prone to cut ethical corners,” it will be easier to dismiss that 
 as a necessary by-product of moving fast and stick with the overall positive mental 
 model. 

 But if the “cuts ethical corners” remark had been first, the mental model would start off 
 being negative, and the “cunning” and “ambitious” remarks would become negatives. 
 They would be perceived as qualities that would enable the candidate to cause more 
 damage. 

 To protect against information cascades, have everyone separately write down their 
 feedback. Then present all the feedback at once before starting to consider how to 
 assimilate it. 

 13.  Survivorship bias  : When Richard Doll and Austin Bradford  Hill studied the effect of 
 cigarettes on lung cancer in 1950–the first major study to prove the link–they had to 
 choose a cohort of subjects to follow. They decided to ask all 60,000 doctors in the UK if 
 they could be followed in the study. 

 This was a wise choice for several reasons. Doctors could be expected to provide 
 reliable reports on their health and smoking habits. When they die, it is likely that it will 
 be in a hospital that will provide an accurate cause of death. But most importantly, the 
 names and addresses of doctors appear in a registry, so they will be easy to find and 
 survey even years later. 

 Survivorship bias is a major problem in long-term studies. If subjects drop out, no data 
 on them is collected, but subjects suffering ill effects are more likely to drop out, hence 
 the bias. Survivorship bias occurs in informal non-experimental settings as well. We hear 
 the stories of the champion athlete or the CEO of a unicorn company. However, care 
 should be taken to consider how their stories compare to the many also-rans whose 
 stories we don’t hear, lest we falsely believe their success is due to the factors in their 
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 stories.  331  It is true that Gates, Jobs, Madonna, Winfrey, and Zuckerberg dropped out of 
 college and became rich, but that may not work for everyone. Of the many people we 
 don’t hear about, college dropouts earn 50% less than graduates on average. 

 14.  Bias for Action:  Many companies promote a “bias for  action.” As Amazon puts it, 
 “Speed matters in business. Many decisions and actions are reversible and do not need 
 extensive study. We value calculated risk taking.” It is important to get products to 
 market quickly and to avoid being paralyzed by over-analysis, so this is an appropriate 
 strategy for an e-commerce company in an expanding economy. 

 But a bias for action is not always appropriate in high-stakes scenarios. Brain surgeons 
 plan before they cut. And in the front-line trenches of World War I, those with a bias for 
 inaction fared much better. As Auguste Rodin said, “Patience is also a form of action.” 

 Co-author Peter remembers two crucial times when the start-ups he was involved with 
 had to decide whether to move to a larger building. Both times the decision was not to 
 move, and despite some grumbling about overcrowding, both times it turned out to be 
 the correct choice.  Waiting for the moment should  be considered in the space of possible 
 actions. 

 15.  Bias for Addition:  Why is everything so complicated  these days? One factor is a 
 natural tendency to fix things by  adding  something,  even when a better solution would 
 be to  subtract  something. An experiment involving  Lego blocks shows that when 
 subjects are asked to stabilize a structure, they do so by adding support pieces. Even 
 when there is a simpler solution of removing the piece that caused the instability in the 
 first place.  332 

 The research suggests that subtractive ideas require more cognitive effort (they have 
 less availability).  A good practice is to remind ourselves  to take the time to look for a 
 simpler solution, and in particular for subtractive ones. 

 We could add even more items to this list, but instead will point to our first recommendation of 
 Part IV  : Broaden education in data science. Better  education can help us all become better 
 consumers of data and information. 

 This chapter's key message is that  data science does  not automatically lead to more 
 understanding  . In fact, Harvard Professor of History,  Jill Lepore, who has written and talked 
 extensively about data, has expressed the provocation that “Data killed facts”,  333  implying that 
 data may obscure truth. There is much to what Lepore says, but this book argues that only data 
 science done poorly obfuscates facts and truth. Every dataset has a story to tell, but we need to 
 tease out that story by clearly explaining where the data came from and what it says, putting it in 
 the context of other studies of the same phenomenon, making sure we distinguish correlation 
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 and causation, and presenting the story in a way that is not prone to cognitive biases and will 
 not lead to misunderstanding. 
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 Chapter 12. Setting the Right Objectives 

 The fifth rubric element is setting Clear Objectives, an obvious necessity when our goals are to 
 predict, optimize, or recommend. But, clear objectives are also needed to focus data science 
 efforts in classification, transformation, or clustering. Even projects seeking insights need clear 
 objectives to help focus and make their explorations more efficient. 

 Having observed many data science projects start to finish, the authors note that objectives 
 initially seem clear, be they decreased delays, increased revenue, improved consumer 
 engagement, increased clicks, or many more. Occasionally, they might actually be as obvious 
 as they are in  Part II  ’s speech recognition, traffic  speed estimation, copyright identification, and 
 earthquake prediction examples. However, often team members learn that objectives are not as 
 clear as they first seemed. Perhaps, the goal is ill-defined. Perhaps, it is hard to weigh the 
 relative importance of multiple sub-goals or to balance conflicting ones. Perhaps, there are 
 problematic and unintended consequences. 

 On one hand, it might seem that teams should try to specify early in a project  exactly  what they 
 want to achieve, both to minimize wasted effort, and so those using or relying on the data 
 science applications receive their full benefit and suffer no harm. On the other hand, problems 
 may not become clear until a project’s engineering is well-underway, or it has garnered data 
 from early users. Expressions such as “Release Early, Release Often,” captures this latter 
 notion by suggesting that project engineering be iterative and responsive. We recommend that 
 objectives should be clear at every stage, but objectives may change. 

 It is also difficult to take the time upfront to think deeply about objectives. Teams are anxious to 
 dive into the project's guts and work on difficult programming issues, machine learning, 
 statistics, etc. Data scientists may feel elbow grease and (their own!) genius are the main 
 ingredients of success. 

 This is particularly true since projects almost always have aggressive completion dates. Just 
 “diving in'' is consistent with Mark Zuckerberg's aphorism that Facebook used in its early years: 
 “Move Fast and Break Things." However, many feel Facebook's speed focus led to preventable 
 mistakes. Getting the correct balance between careful upfront thought and rapid iteration is a 
 necessary challenge in many projects. 

 This section focuses on the challenges in setting a project's objectives: 

 ●  The clarity of the objectives 
 ●  The balance of benefits across affected parties 
 ●  Fairness, a specific topic within the topic of balance 
 ●  The impact of the objectives on an individual: manipulation, filter bubbles (though these 

 affect society as well), privacy, and being human 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  178 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 ●  Transparency 

 We will do our best to organize our discussion under these headings, but we acknowledge some 
 challenges sit astride a few. Also, some topics will be further revisited in  Section 14.3  , which 
 overlays an ethical lens on them. 

 12.1 Clarity of Objectives 

 It is surprising difficult to determine objectives, as shown in these six project examples: 

 1.  Self-driving cars 
 2.  Spam filtering 
 3.  Search engines 
 4.  Image classification 
 5.  Monitoring city noise levels 
 6.  Weighing response time versus accuracy 

 1. Consider the problem of setting a self-driving car's speed. Perhaps the car can determine the 
 legal speed limit, the speed of surrounding traffic, the passengers’ desires, and can predict how 
 fast it can safely drive given traction and reaction-times. But how does the team set the right 
 speed objective? The objective “Travel as fast as safety permits, but stay under the speed limit” 
 might be: 

 ●  Unclear, because it doesn’t quantify the risk threshold. 
 ●  Frustrating to passengers, and dangerous, if most traffic is above the speed limit. 
 ●  Overly simplistic since speed limits were never really intended literally. 

 On the other hand, should one ever create a data science application that deliberately aims to 
 break a law, even just a posted speed limit? 

 2. Consider weighing false positives versus false negatives in spam filtering. There is always a 
 trade-off; how many spam messages should we accept in our inbox to avoid having a valid 
 email relegated to the spam folder? This application must set a reasonable threshold, which 
 could vary for different email uses or users. 

 3. Consider setting a search engine's objectives. In one sense the objective is clear: give good 
 answers, not bad ones. But there are many complications: 

 ●  There is a trade-off between  precision  (the percentage  of relevant results among all 
 retrieved results) and  recall  (the percentage of all  relevant results retrieved). This can be 
 summarized with a single F1 Score, a weighted average of precision and recall, or by 
 measuring precision among, say, the top 10 results. 
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 ●  The relevance of a page to a particular query is determined by a match between words, 
 but the implicit concepts behind the words and the user’s intent must also be factored in. 

 ●  Personalization is less important in search than in song recommendation; everyone gets 
 the same result for the query, “capital of france.” But there are individual and regional 
 differences in search results and search engines must decide which to cater to. 

 ●  In classic information retrieval, the answer is a list of references to works published by 
 others. Search engines give a list of links, but also present answers directly on the result 
 page (“Capital of France: Paris”) and present information in pictures, maps, and other 
 formats. They must decide how much to prioritize each format for each query. 

 ●  To be a good result, a page should be relevant to the query, and should also 
 demonstrate expertise, authoritativeness, and trustworthiness on the topic. As a proxy 
 for authority, search engines can use the Web’s link structure, and the pattern of traffic of 
 who clicks on what links. 

 ●  Some queries, such as “what is the meaning of life” or “best ice cream flavor” have no 
 objective ground truth response. Different people may prefer different responses, and 
 search engines need to decide whether to give people what they prefer, or to give them 
 a more balanced portfolio of responses. 

 ●  No matter how carefully a metric is crafted, search engines still employ human search 
 quality raters who evaluate experimental results and give guidance on what works.  334 

 4. Image classification might seem to have an obvious objective of maximizing the correctness 
 percentage, but that is not sufficient. Rather than being binary right or wrong when searching 
 for, say, a Boston Terrier, there should be a small penalty for retrieving a French Bulldog, a 
 larger penalty for a Saint Bernard, and a huge penalty for a cow or a pornographic image. 

 5. NYU’s SONYC (Sounds of New York City) uses big data and machine learning to monitor and 
 report on city noise levels and improve quality of life.  335  While this seems like a good idea, the 
 danger is if reports of noise level are enforced mechanistically: “The system said you exceeded 
 the allowed decibel level, so I’m going to have to write a citation” rather than with nuance: “The 
 system said you exceeded the allowed decibel level, but I can see you’re celebrating a special 
 occasion, so just don’t let it get out of hand, ok?” 

 6. In any application, what should the balance be between response time versus accuracy? 
 Perhaps some transformation gains 1% accuracy for each 1 second increase in latency. What is 
 the right balance point between crisp responsiveness and accuracy? The monetary cost of 
 computation or even its power consumption may also enter into the objective. More generally, 
 within Operations Research there is a well-developed theory of multi-objective optimization, 
 which recognizes that in all but the most trivial problems there will be multiple possible solutions 
 that form a  Pareto frontier  where no solution is better  than the others on all objectives. 

 One particularly challenging problem is the “tyranny of the easily measurable,” which we 
 previously covered when describing the McNamara fallacy. We find a proxy measurement and 
 try to optimize it, even if the proxy is not exactly what we really want to optimize. Often this ends 
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 up prioritizing easily-measured short-term objectives over difficult-to-measure long-term ones. 
 For example, it is easier to establish and achieve the goal of maximizing user clicks per day 
 than it is to maximize long-term customer satisfaction. 

 Even when using a good proxy metric, as we noted in  Section 11.4.4  , Goodhart’s Law says 
 “When a measure becomes a target, it ceases to be a good measure.”  330  People may end up 
 optimizing the metric without regard to the underlying activity it is supposed to reflect. When a 
 company sets the goal of minimizing the length of customer service calls, the call center agents 
 may respond to customers with “Sorry, our systems are down–hang up now and call back later.” 
 Yet another aphorism is that “you get what you measure.” 

 Let's look at the particularly pernicious example of a video distribution site that rewards content 
 uploaders solely with advertising click-based revenue. However, this motivates the uploading of 
 popular, but problematic, content to gain views, clicks, and the associated revenue. At first, that 
 might seem okay, but the practice may lead to divisive political content, outright falsehoods, or 
 other forms of clickbait. Not only might this be harmful to a site’s reputation, it could lead to 
 societal problems. In fact, with similar motivation, groups have uploaded problematic content 
 and used its revenue to support harmful causes. Video hosting sites have responded to this by 
 demonetizing controversial videos. This is not censorship–the videos can still be viewed–but it 
 eliminates the incentive to do it for monetary gain. It is not clear what other steps should be 
 taken. 

 If simple objectives don’t work, there is a slippery slope to when content distribution sites need 
 to become “arbiters of truth,” again quoting Mark Zuckerberg. Even human raters frequently 
 disagree.  336  Determining truth or quality is a difficult  objective, particularly in countries that have 
 expectations of freedom of speech. 

 We finish by illustrating the problems of using averages to set objectives. Fantastic average 
 outcomes may not be sufficient if some cases have egregious outcomes. Bad outcomes may be 
 due to exceptions to the more general objectives, known as  corner cases  . Or, they may be due 
 to data science's frequent probabilistic nature: 

 ●  A few truly bad outcomes in a classification problem have a disproportionate impact on 
 people’s views, even with high average quality. 

 ●  High average investment returns are insufficient if disastrous losses bankrupt clients or 
 destabilize an economic system. 

 ●  Outcomes may vary by subpopulations or even individual users. If five users are 80% 
 satisfied, that's the same average score as if four users are 100% satisfied and one is 
 0% satisfied. The latter may be a very serious problem. 

 ●  Outcomes that vary by subpopulation are more serious problems if they lead to fairness 
 issues, which we discuss in  Section 12.3  specifically  and in  Chapter 13  . 
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 12.2 Balancing Benefit Across Parties 

 Data science applications must often balance their impact across multiple institutions or 
 subpopulations. This is especially evident in advertising-related applications. We touched on this 
 in  Section 6.2  's advertising example, but we revisit  it here. 

 Our previous summary listed the involved parties as consumer, publisher, advertiser, and the 
 advertising platform. However, the public-at-large can be considered a fifth party because of 
 policy concerns. These include what is advertised (e.g., cigarettes), truth in advertising 
 regulations (e.g., very strong regulatory requirements on advertising prescription drugs), or 
 alternatively, wanting a growing, consumer-driven economy. 

 Many techniques have evolved to address some of these issues. Advertising space may be 
 auctioned so as to encourage clicked-on ads, better aligning the interests of the advertiser, 
 advertising platform, and user. Ad auctions where payment is due only on a click or on a sale 
 are even better at balancing incentives. 

 However, these techniques still have challenges, including possibly over-promoting certain 
 types of advertising or inviting clickbait. Short-term/long-term considerations must balance 
 near-term clicks (and corresponding revenue) at the expense of: 

 ●  A reduction in a publisher’s or advertiser’s reputation 
 ●  Users clicking on fewer ads in the long-term, perhaps, fueling the growth of ad-blockers) 
 ●  Regulatory scrutiny, perhaps from the US Federal Trade Commission 
 ●  Harmful society-wide behaviors 

 Thus, an advertising system must manage many competing objectives. Some evolve only over 
 a long period and are hard to measure. Ads even encourage consumers to buy things they don’t 
 want, a topic we return to in  Section 12.4.1  . 

 As another example, a navigation system’s objective to minimize travel time or distance traveled 
 might usually be fine. However, there are balance issues in setting the objectives. A traffic 
 directing system may need to balance pedestrian and resident objections to increasing traffic on 
 certain streets. It isn't far-fetched to believe systems might need to make more far-reaching and 
 complex prioritization decisions, akin to high occupancy vehicle lanes  ,  which prioritize cars with 
 multiple occupants. They might also want to prioritize ambulances. Certainly, these latter issues 
 arise more with self-driving cars which presumably  will  actually follow the navigation system’s 
 directives. 

 Another difficult category of data science applications arises from needing to set objective 
 functions under conditions of scarcity. All too often, optimization problems are essentially 
 zero-sum games. One achieves an objective only by leaving another objective wanting. 
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 For example, a school district with a relatively fixed budget can either vote funding to programs 
 for advanced students or for remedial reading and mathematical education. Even if data science 
 could optimize precisely the best educational intervention and predict its effectiveness, it’s 
 essentially impossible to make the broader educational policy decision because there are too 
 many unspecified societal objectives. 

 If the different educational outcomes could be precisely characterized, a school committee’s 
 detailed policy analyses might be more informed. Counterintuitively, providing fine grained 
 predictive data could be more disruptive than having a less informed judgment call. Very 
 possibly, the more detailed the data, the sharper the fight. 

 Similar trade-offs occur when applying data science to economics. Is the goal to maximize 
 average GDP growth per capita, or to also include distribution objectives? With greater concern 
 over planetary limits and sustainability, maximizing production and consumption might or might 
 not be the most important objectives. 

 12.3 Fairness 

 While the previous section discussed balance among different constituencies, this section turns 
 to the related topic of fairness across different societal subgroups. There is concern if data 
 science generates “fair” results or answers, a difficult term to fully define. However, it certainly 
 relates to the balance of benefits and harms defined in  Chapter 3  ’s ethical framework. 
 Abstractly, fairness strives to eliminate disparate treatment or impact: 

 ●  Disparate treatment  is when a decision-making process  bases its decisions on a 
 subgroup’s protected attribute (such as gender or race). This is conscious, intentional 
 discrimination. 

 ●  Disparate impact  is when the outcomes of a decision-making  process 
 disproportionately harms (or benefits) a group defined by the value of some protected 
 attribute. Data scientists who intend to remove bias by leaving out protected attributes 
 may still inflict disparate impact, for example if the attribute is correlated with some other 
 attribute. 

 In the United States, disparate treatment is legally proscribed, whereas disparate impact is only 
 legally proscribed when not accompanied by an adequate defense on the grounds of business 
 necessity.  337 

 This concern in data science research is relatively new, but interest has grown rapidly since 
 2015. Chouldechova et al. survey the topic and write: 

 The last decade has seen a vast increase both in the diversity of applications to which 
 machine learning is applied, and to the import of those applications. Machine learning is 
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 no longer just the engine behind ad placements and spam filters; it is now used to filter 
 loan applicants, deploy police officers, and inform bail and parole decisions, among other 
 things. The result has been a major concern for the potential for data-driven methods to 
 introduce and perpetuate discriminatory practices, and to otherwise be unfair.  338 

 We first observe that there are two ways an analysis of fairness concerns needs to be done: 

 1.  Data science applications must faithfully implement their designers' objectives. Getting 
 this right is a technical challenge, similar to the data and modeling challenges in  Chapter 
 8  and  Chapter 9  . 

 2.  A system's fairness objectives must be well-considered and carefully specified. Fairness 
 goals are not so easily stated. 

 The technical challenges are the clearer ones. For example, if law enforcement uses facial 
 recognition software to identify criminal suspects, and it performs materially worse when 
 classifying people of color, it results in unfair enforcement. If such systems had many false 
 positives, people of color would be more likely to be inaccurately recognized, resulting in their 
 being prosecuted more often. If systems had more false negatives, the opposite would happen. 

 Machine learning-based system quality may depend on how many samples they learn from as 
 well as that data's biases (e.g., when trained on decisions resulting from unfair policies or by 
 biased individuals). Unless carefully addressed, technical problems due to those biases are 
 likely. 

 The same care is needed when doing clinical trials. Over time, more effort has been made to 
 ensure trials include many subgroups so drug approvals take their results into account.  339 

 There are many other technical challenges, as Chouldechova et al. discuss: 

 ●  Not only might there be a sparsity of data from some subgroup, the data from it could be 
 differentially poor. 

 ●  Data science applications can have a multi-stage impact on the world by impacting other 
 parties that then respond to changing conditions. Such applications may need to have 
 models of long-term behavior. For example, when modeling college admissions policies, 
 not only the first stage (or present), but also the impact on the next generation may need 
 to be modeled. This is because future college admissions may be impacted by whether 
 a parent was college educated. 

 ●  Data science applications are frequently combined (e.g., a multi-stage selection 
 process). But even if all the subcomponents are fair, it can be hard to show that an 
 aggregate system is fair. For example, a hiring pipeline's first stage might be fair in and 
 of itself, but it could still select candidates that are differentially rejected in an otherwise 
 fair second stage. 
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 Mehrabi et al taxonomize many of these data and modeling related issues,  340  but difficult as 
 these technical challenges are, there are perhaps even  greater  fairness challenges in setting a 
 particular application's objectives. 

 The criminal sentencing and parole decision-making example is a good one to consider, as 
 fairness is central, and there has been a particularly serious debate on whether such algorithms 
 exhibit bias. Much discussion has centered around applications of  COMPAS (  Correctional 
 Offender Management Profiling for Alternative Sanctions)  ,  which has been “used at each step in 
 the prison system, from sentencing to parole,” according to a well-publicized May  2016 
 ProPublica  article.  341  There are two  different fairness  metrics against which COMPAS could be 
 measured: 

 ●  The  ProPublica  article deemed the use in US courts  of COMPAS  to be unfair when 
 measured  against a notion of fairness later called  “equalized odds” in the technical 
 fairness literature. It takes into consideration not only the protected attribute, e.g., race, 
 but also the outcome, e.g., whether a person re-offended or not.  342 

 The authors showed it was twice as likely for black parole applicants who did not 
 re-offend to receive high risk scores as non-re-offending white applicants (false 
 positives). Similarly,  the likelihood of a non-reoffending  black applicant receiving a low 
 risk score was about half that of a non-reoffending white defendant (false negative rate). 
 In summary, black applicants suffered a negative disparate impact. 

 ●  COMPAS’ creator, Northpointe, replied in July 2016 with an analysis arguing that the tool 
 satisfies the classical fairness notion “calibration” or “predictive parity.”  343  This is defined 
 as conditional independence of the outcome and the attribute given the prediction of the 
 model. In the case of COMPAS this meant that, within the separate groups of those who 
 scored “high” or “low” risk, there was no correlation between the race and the actual 
 recidivism. In other words, black and white defendants assigned approximately the same 
 score by the algorithm did indeed have approximately equal recidivism rates. 

 This disparity led academics to show the impossibility of simultaneously satisfying two different, 
 but reasonable, notions of fairness.  344,345  Practically,  data scientists have the ethical necessity of 
 considering societal fairness, despite there not being universal consensus on what that means. 
 They need to consider the impact on all society's subgroups. In commercial settings, that may 
 even require ignoring whether or not some subgroups are revenue-bearing customers. 

 More broadly, given that all systems have some degree of imperfection and that almost nothing 
 can satisfy all possible constraints, how good is good enough? We may become frozen by 
 analysis paralysis or forget the popular adage, oft attributed to Voltaire, “the best is the enemy of 
 the good.” A legal precedent for a balance, dating back to a 1971 California State guideline, is 
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 the so-called “80% rule” of the US  Equal Employment Opportunity Commission. This sets a 
 20% impact as an evidentiary standard to make a case for disparate impact. 

 However the law may be a low bar for such a central question. As we emphasized in  Chapter 3  , 
 an ethical approach recognizes the tensions among principles and interests. It requires a clear 
 decision-making process within a community rather than a one-size-fits-all cutoff. 

 12.4 Concerns to the Individual 

 Recommendation systems can help cut through the thicket of choices to find good matches for 
 our interests. But they may also lead us to make bad choices, ones benefiting others but neither 
 us nor society. They may amplify feedback loops, creating filter bubbles reinforcing a single 
 interest rather than a broader range of balanced choices. 

 In the best case, data science automates tasks, letting us instead solve harder problems, find 
 better solutions, free up time, and improve safety. In the worst case, data science reduces our 
 satisfaction from doing tasks, leaving us to perform only ones they cannot. 

 12.4.1 Personalization or Manipulation 

 Advertising or recommendation personalization certainly can be beneficial. In 2000, co-author 
 Alfred’s younger son was born and became their third infant in seventeen months. The new 
 parents were definitively uninterested in ads for cool cars. Minivan ads were the order of the 
 day, or perhaps, decade. 

 Furthermore, personalization is not a new concept. Long before he was buying minivans, Alfred 
 learned sales from his druggist father, who recommended customers spend more for a larger 
 tube of toothpaste (at a lower cost per ounce), but also used his personal knowledge to suggest 
 that a customer should buy a gift of chocolates or cologne to smooth over a marital dispute. 

 On one hand, manufacturers, providers, and salespeople have reaped great benefits from data 
 science-based personalization informing potential customers of new products. It has created 
 new markets, rewarded innovation, facilitated previously non-existent competition, and had 
 significant economic benefits. 

 On the other hand, behavioral targeting can tempt us in ways that are counter to our best 
 interests. The book  Phishing for Phools  argues that  while the free market is designed to bring 
 buyers and sellers together to the benefit of both, sellers can use tricks to exploit the buyer’s 
 irrational side. This has been the case since the advent of modern advertising in the 1920s up 
 till the current day, where candy is conveniently located next to supermarket checkout despite 
 the buyer’s best interest of avoiding obesity. But online targeting enables an even higher level of 
 manipulation. 
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 In the political realm, many wonder if big data perniciously influences people's views, polarizing 
 subgroups via reinforcing and hardening viewpoints. While perhaps true, in the US, concerns 
 predate data science and the internet wide use, going back to the advent of cable TV and its 
 expansion of available TV channels. Since TV channels were no longer a scarce commodity, 
 there was then room for a free market in presenting differing points of view. This led the US 
 Federal Communications Commission (FCC) to revoke the Fairness Doctrine for TV news in 
 1987. Unsurprisingly, the combination of more news channels and reduced regulation led to 
 more differentiated viewpoints, just as later happened on the internet. 

 Even earlier, in the 1890’s, yellow journalism by both the Hearst and Pulitzer newspaper chains 
 used sensationalism to appeal to and influence their audiences. Their promulgation of what is 
 now called fake news inflamed anti-Spanish public opinion. In particular, they both published an 
 unfounded rumor alleging an explosion that sank the USS Maine was a Spanish attack.  346  While 
 this may not have caused the Spanish-American war, it made it easier for President McKinley to 
 prosecute it. 

 Despite earlier precedents, online news recommendations are different due to: 

 ●  Reduced barriers to publication, letting anyone instantly disseminate anything at very 
 low cost. 

 ●  The scale at which systems operate. 
 ●  Individual customization of a story based on the reader’s characteristics. 
 ●  Lessening of restrictive societal norms that temper speech, particularly given the 

 internet's cross-border nature. 
 ●  The ability to quantify impacts and to tune itself and become ever more effective. 

 A well-publicized 2012 Facebook experiment was an example of the power to influence. 
 Facebook wanted to determine if seeing friends' happy posts would make people happier (due 
 to empathy) or sadder (due to envy).  347  Researchers  manipulated 0.04% of users' feeds so that 
 some got more posts with more happy words, some with more sad words, and some an 
 unaltered feed. They then measured how many happy or sad words users put in their own 
 posts. Reducing the number of negative words users saw caused them to include more positive 
 words in their own posts – but only by about one word in 2000. 

 This had a negligible impact on any particular user, but it was statistically significant given a 
 sample size of 700,000 users. Quantifying the impact somehow makes this experiment seem 
 more manipulative than a newspaper choosing scandalous headline words to sell more copies, 
 and this experiment was ill-received.  Section 14.3  discusses incentives and organizational 
 challenges from balancing research objectives and ethical principles. 
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 Unsurprisingly, creators of recommendation systems try very hard to provide recommendations 
 on which users click or engage. Users appear more satisfied and the content provider gets more 
 revenue. Seemingly, this is a win-win, but there are multiple embedded challenges: 

 First, there are challenges within the recommendation system's domain of operation (such as 
 videos). Should recommendations be for content a user is sure to like or should the system 
 suggest new items that might or might not be pleasing? If recommendation systems only show 
 us what we like, they will not expose us to new ideas, they may reinforce our existing 
 preferences, and they may reduce our understanding of different ideas or points of view. (We 
 discuss filter bubbles a little later.) On the other hand, we humans are creatures of habit, and we 
 do like the familiar. 

 Second, assume a recommendation system was somehow “perfect” within a particular domain 
 such as videos. How could it have sufficient perspective to maximize a user’s overall 
 satisfaction or utility across that user's many activities (e.g., books or sleep)? Should a 
 recommendation system suggest a user exit from its domain and do something else? 

 People vary a lot in what they want to do at any moment, so this would be very hard to get right. 
 It's hard even for parents to decide when to tell a child, “Stop goofing off and study.” So we 
 probably shouldn't expect a recommendation system to tell us we cannot afford something or 
 should go to bed. On the other hand, ethical considerations would suggest that data scientists 
 consider this issue. 

 After the US Surgeon General’s 1964 report that smoking caused cancer and heart disease, 
 many societies developed a consensus to reduce smoking. Most people believe it worthwhile to 
 nudge people towards healthy objectives.  348  Environmentalists  want to nudge people to use less 
 fossil fuel or bottled water. Companies nudge consumers to like them and their products. 

 China nudges people to have beliefs and take actions that contribute to societal and state 
 harmony. Most western readers might be pleased to encourage reducing plastic waste but not 
 be so pleased at society-wide recommendation systems trying to influence politics. Deciding if a 
 societal nudge is beneficial or harmful is a challenge. 

 Let's look at video games with respect to user customization. The industry is huge, with 3 million 
 customers and revenue of $86 billion in 2021 (more than double the movie industry). Game 
 designers use data science to analyze player reaction and engagement. Games obtain user 
 feedback when played and may use it to shape game play to maintain a player’s interest. For 
 example, an ad-supported poker game might recognize a player's boredom and deal them a few 
 strong hands. On the other hand, games could become too compelling. 
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 As these examples show, there is immense power in using data science to customize individual 
 experiences. In the limit, one could conceive of a dystopian society with overly persuasive 
 machines selling us things we shouldn’t buy or distracting us so we get nothing done. 

 Companies have recognized this challenge, at least to a degree. Both Apple and Google can 
 now track how long we use mobile devices and remind us to cut down. The Tencent video game 
 company uses facial recognition and other technologies to force users off of a game after a 
 certain period. In August 2021, The Chinese National Press and Publication Administration 
 limited video game usage for players under 18 to one hour per week and only on Fridays, 
 weekends, and public holidays. Beyond China, there is increasing desire to enforce age-related 
 restrictions, but this might require strong authentication when accounts are created (e.g., with a 
 photo and birth certificate), creating more privacy-related dilemmas. 

 Professionals are researching these issues. The first dedicated scientific conference on 
 recommender systems was in 2007,  349  and there are  now sessions focused on responsible 
 recommendations in major conferences, such as the International Web Conference.  350 

 Some questions to ask include: 

 ●  What do we mean by a good recommendation? Is engagement (clicking) enough, or are 
 other metrics of deeper user satisfaction needed? 

 ●  How does a system ensure it has no undesirable biases that perturb its 
 recommendations? 

 ●  How do we benefit from self-reinforcing recommendations but not reinforce partisanship 
 and reduce acceptance of other points of view? 

 ●  Given a recommendation system's power, how does it recognize heterogenous needs of 
 individuals? 

 12.4.2 Filter Bubbles 

 People naturally gravitate towards views with which they agree. Some prefer conservative 
 editorial pages from the American Wall Street Journal or the British Telegraph. Others prefer 
 more liberal viewpoints from the New York Times or the Guardian. People self-select information 
 sources by buying a newspaper or, increasingly, visiting a website. 

 However, recommendation systems using data science algorithms “pre-select” what users will 
 see. Given the vast amount of available material, such algorithmic selection is necessary. Users 
 are no longer in a small town library where they look at ten or twenty book spines and choose 
 one. They depend on automated assistance to wade through so much material. 

 As described by Pariser,  351  filter bubbles  are when  the algorithmic pre-selection of materials is 
 consistent with an individual's demonstrated point of view. This can be based on the group to 
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 which they belong or certain actions they have taken; clicking on links, visiting sites, or buying 
 related merchandise. As with advertising, personalization is valuable, but too much 
 personalization seems manipulative and restricts what viewpoints one might be exposed to. The 
 filter bubble term connotes excessive personalization that engenders harm. 

 Many people are concerned about societal polarization in the internet era and recommendation 
 system effects . The capability for almost anyone to publish on the web at very low cost has 
 created a system with a tremendous number of different content creators, some of which are 
 polarizing by design. Furthermore, as of 2022, social media platforms in the US are generally 
 not responsible for the content they propagate due to Section 230 of the Communications 
 Decency Act. 

 In  Section 12.4.1  , we observed that there are multiple  reasons for increased polarization in the 
 US, and the importance of filter bubbles is contentious: 

 ●  “Your Filter Bubble is Destroying Democracy,” a 2016 Wired magazine editorial,  352 

 argued that recommendation systems cause polarization. The author reflected on the 
 innate likelihood of self-reinforcing systems and his own experiences. The correlation of 
 increasing social media use with increasing societal polarization was seen as supporting 
 evidence. 

 ●  Richard Fletcher of Oxford University showed that people who use social media, search 
 engines, and news aggregators have more diverse news diets than people who go 
 directly to news websites.  353,354  Work by Zuiderveen  et al. concludes that “at present 
 there is little empirical evidence that warrants any worries about filter bubbles.”  355  We 
 return to this topic in  Part IV  . 

 Recommendation systems also face the challenge in providing perspective to users, particularly 
 but not exclusively with respect to news. Lots of clicks are rewarding from a monetary or user 
 engagement perspective, but focusing only on that goal may result in one-sided 
 recommendations that reinforce viewing patterns. Many also acknowledge that filter bubbles 
 arise, at least in part, due to the use of clicks as imperfect proxies of user interest. For example, 
 users sometimes click on an article out of curiosity but have no long-term interest. 

 Some believe that filter bubbles can be “burst” by diversifying the content that is shown to users, 
 but content diversity may come at the cost of a lower click rate. On the other hand, increasing 
 the dispersion of results may also benefit information platforms as they can learn the 
 applicability of new information and better understand the tail of click distributions. 

 12.4.3 Individual’s Privacy Concerns 

 Consumers are concerned about their privacy. They wonder how their data is being used for 
 personalization and advertising, and whether their data is being shared in ways they don't know 
 about and wouldn’t approve of. 
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 In some cases, these concerns are well-justified. In February 2020, the FCC imposed over $200 
 million in fines for cell phone carriers who sold customer location data to data aggregators 
 without the customer’s permission. In this data, the identity of phones is anonymized in the 
 sense that each phone is assigned a random id tag. 

 However it is possible to de-anonymize the id tags, as in the case of the general secretary of the 
 US Conference of Catholic Bishops, who resigned after reporters legally obtained phone 
 records and discovered that a certain id tag was correlated with his home location, his office 
 location, his vacation home location, and also with activity on the gay dating app Grindr. 
 Consumers would be better served if selling data like this was more tightly regulated, and the 
 risks better explained. Privacy would be enhanced if no individual id tags were allowed, just 
 aggregate data. 

 In other cases, even if personal data is actually secure, the use cases are confusing to 
 consumers, so they still have concerns. The common practice of  behavioral  retargeting  is 
 particularly confusing to consumers. Suppose a user visits company  A  and browses a product, 
 but decides not to buy. Later, the user is on news site  N  and sees an ad for the same product. 
 The user assumes that  A  and  N  have colluded to share  their private information and identity and 
 may feel betrayed. Actually what happens is that company  A  contracts with an advertising 
 broker  B  to show ads to users who meet a behavioral  profile (such as browsing a specific 
 product). When the user comes to site  N  , a cookie  on the user’s computer determines what ad 
 is shown, but neither  A  ,  B  , nor  N  retains any personal  information about the user. Only 
 aggregated information, such as the number of impressions, is reported for payment purposes. 

 However, users may find these ad placements or recommendations to be creepy. Creepiness is 
 hard to specify (“I know it when I see it”), so companies need to be conservative to avoid 
 alienating users. 

 Companies such as search engines and social networks may have a large enough network that 
 they can serve as their own ad broker. These sites are, in effect,  walled gardens  of personal 
 information which contractually protect user data while using it to do personalization. They 
 usually succeed in protecting user data. Cases such as Facebook's error with Cambridge 
 Analytica are the exception, not the common case. That said, companies are realizing that 
 holding personal data can be a liability, and are investing in technologies, such as federated 
 learning (discussed in  Section 10.1.3  ), that keep  data only on a user’s personal device. 
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 12.4.4 Impact of Data Science on Being Human 

 In addition to impacts on choice, data science-based recommendations and, more generally, 
 automation, can have broad effects on us as humans. Data science is at the center of many 
 innovations that modify our everyday lives. 

 As mentioned in  Section 5.1  , Nicholas Carr ponders  the impacts of automation on humans. In 
 his book,  The Glass Cage: How Our Computers are Changing  Us  ,  356  he wonders whether 
 technology somehow ensnares us, perhaps taking away joys of life. But despite this question, 
 no one argues we should risk human life if a robot can remediate a hazardous waste situation. 

 Automobile safety systems, with highly detailed road maps, detailed situational awareness, and 
 adaptive response algorithms reduce traffic accidents. More broadly, despite transitional effects 
 that caused harm, automation of human labor was responsible for great benefits from the 
 industrial revolution onward. 

 On the other hand, data science applications change what people actually do and learn. A 
 colleague who started a job in Hartford said he would never really learn the lay of the land; he 
 just followed his mapping system's directions. These systems do the cognitively difficult task of 
 finding the best route, even in complex traffic, reducing us to piloting the car and following 
 directions. 

 The sports community has had similar concerns about data science changing the game, as 
 shown by stories on data-driven analytics/automation in auto racing,  357  baseball,  358,359  and 
 golf.  360  For example, in baseball analytics has shown  that the traditional hitting strategy of “just 
 make contact with the ball” is inferior to a strategy based on power hitting. The result is that 
 batters wait longer for a good pitch to hit, and games take more pitches and more time to 
 complete, necessitating rule changes to try to speed the game up. Additionally, if higher-level 
 sports judgments become more automated, sporting results may still be based on the strength, 
 coordination, and training of athletes, but data science will have an increasing role in strategy. 

 While we may rebel against automation in some circumstances, we may not mind it in others. 
 We will thus be challenged to develop those applications of data science that best benefit our 
 long-term welfare. Despite Socrates' admonition that, “the unexamined life is not worth leading,” 
 in modern parlance, we will need to establish ground rules on how we are to be examined, 
 measured, and optimized. 

 The many Future of Work conferences in the mid-2010’s, for example the Shift Commission 
 workshop,  361  considered job automation concerns. Some  think today's situation is different than 
 in the Industrial Revolution, and automation will result in longer term disruption and 
 unemployment. Others think data science will unlock human potential, pointing to vast new 
 markets, industries, and new unanticipated jobs. Only in the fullness of time will it become clear 
 how society will set objectives for data science applications that affect employment. However, 
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 there is little doubt this will challenge policy makers and data scientists in new ways.  Section 
 14.2  on economic impacts touches again on this topic. 

 12.5 Transparency 

 Designers of data science applications benefit from disclosing their goals to the relevant 
 audiences. To quote Benjamin Franklin, “honesty is the best policy.” In the data science world, 
 transparency serves three benefits: 

 ●  It forces a team to have broadly acceptable objectives. 
 ●  It forces the team to make them clear and succinct. 
 ●  It helps gain trust. 

 But it is also challenging for four reasons: 

 ●  Teams that feel their objectives may be misunderstood do not want to call attention to 
 them. 

 ●  Teams don’t want competitors to duplicate their “secret sauce.” 
 ●  Teams don’t want adversaries to be able to easily defeat their systems. 
 ●  Lawyers may not want public commitments as to goals. 

 This is similar to  Chapter 11  's understandability  discussions, but with a focus on the ends, not 
 the means. Like many of the challenges, this is a delicate balance. 

 Finally, in selecting any specific objective, we must consider the risk/reward ratio. Some projects 
 have limited risk so a mistaken objective won't matter much. Other life-critical systems have 
 great risks, and their objectives must be set far more carefully.  Chapter 13  has more to say on 
 this. 

 12.6 Objectives Recap 

 For convenience, the following summarizes our objectives-related challenges. They illustrate the 
 considerations needed when embarking on or maintaining a data science application. We 
 acknowledge some items overlap and –thankfully– not all challenges apply to every data 
 science application. 

 From 12. Introductory Matter 

 ●  Pre-Specified or Evolutionary:  To what degree must  objectives be specified up front 
 versus arrived at iteratively? If determined iteratively, will initial incompleteness or errors 
 lead to harm? How are objectives modified to meet changing circumstances? 

 From 12.1 Clarity of Objectives 
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 ●  Clarity:  Are the objectives well-specified? Are they understandable to implementation 
 teams, users, and other stakeholders? 

 ●  Balancing Across Competing Objectives:  Do the objectives  capture and properly 
 balance what the application is trying to achieve across competing goals? 

 ●  Balancing Across Time Horizons:  Do objectives balance  near- and long-term 
 benefits? Does the objective function consider and try to minimize long-term negative 
 consequences? 

 ●  Relation to the Law  : Are the objectives legal? Should,  or can, data science applications 
 follow the law or is the law too ambiguous? If data science applications enforce law, are 
 there negative consequences to unanticipated literal and overzealous enforcement? 

 ●  Acceptability of Variable Results:  Is the objective  tolerant of results of varying quality 
 and recognize that some results may be better for some inputs and users than they are 
 for others? We more fully address this in  Chapter  13  . 

 From 12.2 Balancing Benefits Across Parties 

 ●  Balancing across the Breadth Considerations  : Do the  objectives take all 
 stakeholders into account? Will they agree that the objectives consider their needs? 

 ●  Societal Harmony  : Do the objectives lead to societal  coherence or antagonism? Will 
 there be agreement that scarce resources will be well allocated? 

 From 12.3 Fairness 

 ●  Fairness  : Do the objectives ensure different societal  subgroups are treated fairly, 
 especially traditionally underserved groups? Are fairness objectives achievable given the 
 available data and technical approaches? If not, can valid, achievable objectives be 
 found? 

 From 12.4 Concerns to the Individual 

 ●  Breadth of results:  Do the objectives specify the  results should represent different 
 points of view? Will the application attempt to minimize echo chamber-like phenomena? 

 ●  Dependability:  Will the objectives meet the necessary  privacy, security, and abuse 
 requirements? While resilience is an implementation concept, are the objectives 
 matched to applications capabilities? This is discussed more in  Chapter 13  . 

 ●  Creepiness  : Will the system exhibit creepy behavior?  Even if legal and arguably 
 beneficial, will people accept such behavior? 

 ●  Manipulation:  Does the system coerce people against  their best interests? Does the 
 system meet the need for humans to be in control? 

 ●  Being Human  : Do the objectives properly specify what  data science should do and what 
 should be left to humans? In other words, do they render unto data science only that 
 which is data science and leave the rest to humans? 
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 From 12.5 Other Considerations 

 ●  Transparency:  Are the objectives public or is there  a good reason for them not to be? 
 Are the objectives acceptable, at least to the relevant sub-communities? If published on 
 the front page of a newspaper, would readers accept them?? 

 ●  Risk/Reward Ratio:  Do the objectives balance risk  and reward? Including unintended 
 consequences, will the application be beneficial? 

 We have three closing thoughts that apply to all objectives. 

 First, are they reasonably achievable? If not, can they be modified and still result in a useful 
 data science application? Trying to build an application with unmeetable objectives is a 
 self-deceiving waste of time and resources, and it is likely harmful. 

 Second, objectives must take ethics into account, as discussed in  Chapter 3  and  Chapter 7  . 
 We'll say more about how organizations can operationalize this in  Section 14.3  on acting 
 ethically. 

 Finally, we acknowledge that the most subtle force behind the difficulty in establishing objectives 
 arises from data science being applied to really complex and hard problems. Individuals, 
 organizations, and societies have to confront issues they previously had not reckoned with. The 
 applications of data science are important, and that importance leads to pragmatic difficulties 
 and new ethical quandaries. 
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 Chapter 13. Toleration of Failures 

 In traditional software, the challenge is to eliminate bugs and achieve certainty that the software 
 correctly implements the appropriate algorithm and computes the right answer. But, data 
 science has additional challenges: 

 ●  Data science problems often have no unambiguously correct answers. For example 
 there is no 100% agreed on best path for a self-driving car to take. For image recognition 
 tasks, there may be no definitive answer ("is that a dog or a wolf; I can't tell"), and no 
 agreed-upon theory about how to verify answers. 

 ●  Statistical analyses often yield confidence intervals, not definitive answers. Machine 
 learning approaches may return poor answers due to an incomplete training set, an 
 imperfect model, or a lack of clarity in setting objectives. 

 Data scientists should also humbly factor in dependability risks. This is particularly important in 
 safety-critical (e.g., autonomous vehicles) or very large scale systems (e.g., recommendations 
 provided to billions of people).  Chapter 10  discussed  dependability in significant detail, and we 
 won’t repeat that material. 

 The Analysis Rubric specifically calls out Toleration of Failures to remind data scientists to 
 determine explicitly if a problem is amenable to a data science solution. If not, they need to 
 figure out how to make it so or else conclude data science may not be the answer. As of 
 mid-2021, image recognition works for tagging people in personal photos albums, as that is very 
 failure tolerant and there are no significant security issues. However, in court, image recognition 
 cannot be the sole indicator of a person's identity. Disease diagnosis applications aid medical 
 practitioners but do not yet operate on their own. 

 There may even be problems that are just too difficult to ever expect solutions – in chaotic 
 systems or where sufficient data is unattainable. We should try to solve important problems, but 
 some applications may be innately failure intolerant. 

 This chapter looks at how to characterize uncertainty. How to minimize risks entailed by that 
 uncertainty while balancing risks against rewards? How to assess liability for any residual harms 
 that may occur, despite the best efforts to minimize them? 

 13.1 Uncertainty Quantification 

 A fundamental responsibility of any data science application is to clearly explain the uncertainty 
 associated with its conclusions or outcomes. That way, users will have an idea of the level of 
 risk they face. The field of Uncertainty Quantification has a vast literature, including its own 
 journal.  362  Uncertainty can appear in many forms: 
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 ●  The data may be  noisy  , resulting in a model that has high  variance  –sampling a slightly 
 different set of data points results in a surprisingly different model. 

 ●  There may be limits to the  accuracy  of the data. We  might have a near-perfect model of 
 the situation, but be unable to gather the data we need with the accuracy required. 

 ●  The model might  extrapolate  or  generalize  poorly when  queried with novel inputs. 
 ●  The model may be  biased  –a flaw makes the model consistently  wrong. 
 ●  The computer implementation may have flaws–either outright bugs, or subtle  numerical 

 errors  resulting from arithmetic with approximate  numbers. 
 ●  The computer implementation may intentionally include some  randomness  , and give 

 different results when run twice with the exact same inputs. 

 These practices can clarify the uncertainty in data science systems: 

 ●  Don’t report an output prediction as a single number. Instead, specify the prediction as a 
 range with a mean and a  confidence interval  , or possibly  a complete probability 
 distribution. Monte Carlo simulations are often used to create this range of predictions. 

 ●  Clarify the sources of uncertainty in this confidence interval. Is the uncertainty due to 
 inherent noisiness in the underlying process in the real world? Is it due to limitations of 
 measurements or of the model’s expressiveness? Or is it due to flaws in the 
 implementation? 

 ●  Be ready to update the model's parameters. In some cases, after calibrating the 
 uncertainty on a number of experimental trials, it is possible to feed that error back so as 
 to minimize the amount of uncertainty. This is called  inverse uncertainty 
 quantification  . 

 ●  Be aware that a material change in the world, leading to a change in the input data, will 
 usually lead to an increase in uncertainty. See the discussion of non-stationarity and 
 concept drift in  Section 9.1  . Not only will predictions  be worse, the confidence intervals 
 will be larger. 

 Much of data science is understandably focused on accuracy of predictions. But quantification 
 of uncertainty is often even more important than quantification of accuracy. For example, the 
 real estate site Zillow uses a machine learning model to estimate house prices. In 2018 they 
 started buying houses that their model predicted would appreciate in value. 

 In 2021 they abandoned this effort after a $300 million loss. Two problems contributed to their 
 loss. First, they had a lot of objective data on each house: address, school district, square 
 footage, number of bedrooms, comparable sales in the area, etc. But the individual homeowner 
 had subjective insider data that Zillow lacked: did the house have a persistent leaking roof? Was 
 it aesthetically above or below average? In a rising market that was okay; there was still plenty 
 of profit available for both the homeowner and Zillow. But the second problem was that Zillow 
 underestimated the overall uncertainty and volatility in the housing market, including factors like 
 the difficulty of renovating houses under supply chain constraints. 
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 13.2 Risk 

 When applying the Toleration of Failures rubric element, data science applications must balance 
 benefits against the possible harms arising from failures. Data scientists must explicitly consider 
 how to mitigate harms such as: 

 ●  A poor recommendation 
 ●  Undesired, but perhaps subtle, built-in biases 
 ●  Outright errors in the transformation of information 
 ●  Analyses that disseminate incorrect conclusions 
 ●  Other expense, reputational, financial liability, and ethical consequences 

 Even when systems work as intended there may also be reputational costs to consider. Hotels 
 and airlines use historical data to optimize their revenue by knowing some travelers are 
 no-shows, and overbook. In effect, they sell several rooms or seats twice. This benefits them by 
 using their capacity more efficiently, but at the cost of customer frustration and compensation 
 when it is overbooked. 

 Determining the optimization's correct set point is very challenging, particularly if systems need 
 resilience to deal with unusual events, such as bad weather or some other event that makes a 
 flight or location more desirable. As another example, consider  Section 6.2  ’s discussion of the 
 reputational challenge to a web search company if even a tiny percentage of search results are 
 really bad. 

 Generally, the specific  application  of data science  dictates the reliability properties it must meet. 
 The standards are highest when human life is at stake, as when data science is applied to 
 medical diagnosis. Society generally holds automated systems to a higher standard than human 
 judgment. 

 As a non-life-critical example, in the early 2010’s the New York Department of Health asked 
 co-author Alfred whether Google Translate could help the city's multilingual population 
 understand drug labels. Since these were provided in only a few languages, their translation 
 would be valuable to many non-English speakers. Google ultimately declined because it felt its 
 translations were not accurate enough to provide human health advice, and great harm could 
 result. (Google also knew training data on drug advice translation was sparse, so the system 
 would likely be less accurate than on normal text.) Since then, automatic translation systems 
 have become much more accurate. However, there is no definitive answer as to what 
 constitutes sufficient accuracy for this application. 

 13.3 Liability 

 Liability for failures focuses organizations and teams on deterring unwarranted errors and, 
 perhaps, and partially compensates victims for harm. However, data science applications make 
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 liability considerations complex. It may be difficult to determine (1) whether there is a failure, (2) 
 what were the circumstances leading up to the failure, and (3) who is at fault. 

 In uncertain environments, the first step is to set a threshold for failure. Is 99% accurate speech 
 recognition a success or a failure? Is five minutes of downtime a month a failure? 
 Terms-of-service agreements try to define these points. 

 To determine liability, evaluators must establish a correctness baseline, which is not necessarily 
 easy to do. Returning to the example of how fast an autonomous vehicle should go, if almost 
 everyone drives 10% over the speed limit, matching that speed may be safer. However, a police 
 officer might disagree with this logic. The “Everybody Else is Doing It” argument would seem 
 simultaneously both a valid reason to go faster, but an invalid legal defense. As another 
 example, many social networks moderate their content. Action or inaction on certain content is 
 often politically charged, and there may not be consensus on what a failure is. 

 A common issue with a semi-automated system is whether the system or the human operator is 
 at fault. If a car manufacturer warns drivers that its automation system is not for completely 
 autonomous driving, what liability does the manufacturer have if a human driver neglects to take 
 control when the system commands them to? In 2021 a driver of a (non-automated) Amazon 
 delivery truck caused a serious accident. The victim’s family sued Amazon, alleging that the 
 company’s driver-monitoring software system, not the human driver, was ultimately responsible 
 for the vehicle. As of early 2022, the case has not yet been decided. 

 The more parties involved, the harder it is to ascertain fault. Researchers create techniques, 
 software engineers instantiate them into programs, data scientists collect and wrangle the data, 
 other engineers may combine the algorithms and data, and yet others may own, use, license, 
 and operate the resultant systems. These systems include software and hardware. While not 
 wholly unique to data science, the problem's complexity does make attribution more difficult. 

 Self-driving cars or medical treatments are good domains to illustrate the attribution of liability in 
 complex systems. Autonomous vehicles gather data from many sources to accurately model 
 road networks, traffic signals, traffic patterns, vehicular and pedestrian traffic, and regulatory 
 rules. Algorithms use this data to produce the logic to operate vehicles. The logic is bundled by 
 manufacturers into cars, which are sold to consumers who drive them – sometimes in 
 accordance with guidelines, sometimes not. 

 Medical systems increasingly provide valuable, but imperfect, diagnostic and treatment 
 information to physicians. How will our legal system assign liability and allocate damages for 
 these complex, multi-stage systems? And how will insurance work to both protect and properly 
 incentivize safety? 

 Regarding the circumstances leading to error, whether the error was due to gross negligence, 
 negligence, or anticipated behavior is also important. Gross negligence (a legal term of art) is 
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 more odious, and usually results in far greater penalties. On the other hand, certain data 
 science applications may fail expectedly, yet still usually produce great benefits. 

 Liability issues are likely to become more significant as applications become increasingly 
 valuable with a higher potential to cause significant economic harm or loss of life if they fail. 
 Large data-science based utilities serving vast numbers of applications and customers, possibly 
 in healthcare, transportation, or other essential tasks could have societal-scale risks. Any 
 large-scale failure would simultaneously impact many people. We alluded to this problem in 
 some of the examples of  Chapter 6  , such as the route-finding  application. However, there could 
 be far worse outages than this one. 

 We close with both an organizational and societal lens on liability: 

 As three examples of organizational reactions to liability, we note again the prudent delay in 
 releasing Google Health's first application. This reduced Google's risk of liability if it had a data 
 breach. Second, when he was CTO of Two Sigma, co-author Alfred considered the risks of a 
 data breach of intellectual property or personally identifiable information as the hardest issue he 
 had. This was due to the potential consequences being so reputationally and economically 
 destructive. Finally, data science applications often use cloud computing vendors, so risk and 
 liability determination require challenging decisions about trust in computing infrastructure. 
 Some organizations are willing to trust cloud vendors for almost all their operations, but others 
 are more cautious. 

 At a societal level, liability issues may make it very difficult to deploy applications that have truly 
 real risks, yet make fewer mistakes than humans and are thus a net positive. If deep-pocketed 
 enterprises develop these systems, penalties for failures could be so large to prevent their 
 deployment. To be specific, with Level 5 (fully automated) self-driving cars, one can imagine 
 achieving a factor of 10 reduction in fatalities in the United States. But what would the liability be 
 for those remaining ~4,000 deaths per year? 

 When a new office building is constructed, the architects and civil engineers are certified, 
 licensed, insured, and operate under strict rules of liability. If a defect develops, there is a 
 well-defined process for adjudicating responsibility. Not so with software. There is not 
 comparable licensing for software engineers or the companies that hire them. 

 This difference makes sense when we consider that constructing a new building leverages a 
 huge history of experience and established practices, but creating a new software app is largely 
 a novel act of invention, and thus a poor fit for strict, pre-defined rules. In addition, the harm 
 from a building collapsing is great, while the harm from, say, a game app crashing is small. 

 However, as software in general and data science in particular plays an increasing role in 
 life-critical applications, there will be calls for increased scrutiny and regulation. This should be 
 done in a way that balances risks with innovation. In the case of COVID-19, countries needed a 
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 vaccine so much that they granted drug companies immunity from liability for unintentional 
 harm, while providing a Countermeasures Injury Compensation Program to cover cases such as 
 people who lost pay due to sick days after taking the vaccine. 
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 Chapter 14. Ethical, Legal, and Societal Challenges 

 This chapter begins with data science’s broad legal issues and continues with some previously 
 undiscussed societal (primarily economic) implications of data science. It ends by discussing the 
 challenges of internalizing ethical considerations into data science practices. 

 14.1 Legal Issues 

 As technology and data science have ever greater societal impact, the number and diversity of 
 laws regulating them has also grown. Historically, there are legal precedents on many relevant 
 topics, such as: 

 ●  Scale Concerns  : In the 1930’s, IBM's economic power  in the punch card marketplace 
 led to antitrust concerns. 

 ●  National Security  : Nations have long restricted the  export of weapons, and from the 
 1950’s on, the United States and other countries heavily restricted the export of 
 encryption technology and computers. 

 ●  Regulation of Content  : Nations have long had libel  laws and regulated publication of 
 certain types of information. For example, publications relating to national security or 
 violating broadly accepted norms. 

 We won’t attempt to review the historical bases, but instead look into the future, first considering 
 data science from a governmental perspective and then from the perspective of individuals and 
 institutions. 

 14.1.1 Legal Challenges– A Governmental Perspective 

 Table 14.1  lists many of the most pertinent legal/regulatory  areas. 

 One of the most universal problems in these regulations is the question of balance: 

 ●  National security and societal protection argue for strong rights for government 
 subpoena, while strong limitations best serve privacy. 

 ●  Complex regulations can favor large organizations. They have the resources to 
 understand and follow them, while smaller organizations might not. 

 ●  Rules protecting individuals or societies from harmful effects of certain expressions of 
 speech may conflict with legal or even constitutionally mandated protections. 
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 Table 14.1  Representative Areas of Government Interest in Regulation of Data 
 Science-related Activities 

 Area  Examples and Laws 

 Protection of the 
 individual 

 - Privacy:  EU’s GDPR, California’s CCPA, EU’s right  to be forgotten, US Federal 
 Trade Commission authority under Section 5 of the FTC Act 
 - Libel and misinformation:  Ancient English common  law; US state laws, US false 
 information and hoaxes law 
 - Security:  Notification of breach under US state  laws and HIPAA 
 -  Children:  US children’s online privacy protection  act, many laws against their 
 exploitation 

 Protection of 
 society 

 - Content:  German Volksverhetzung laws against incitement  of populated hatred 
 - Subpoena of data:  Chinese cybersecurity law 
 - Rules of international data transmission:  EU’s Schrems  II 

 Regulation of 
 the business 
 landscape 

 - Antitrust regulations:  Tying, pricing, mergers and  acquisitions 
 -  Credit card transactions  : US payment card industry  data security standard 
 - Copyright:  Fair use 
 - Other intellectual property:  Patent, trade secret 
 - Best practices:  SOC 2 to reduce risk 

 Taxation across 
 national 
 boundaries 

 - Sales and value added taxes 
 - Corporate taxation 

 Liability  - Liability and liability limitations:  California  CCPA’s private right of action with 
 statutory damages for security breaches, US Section 230 
 - Attribution of liability 
 - Standards of culpability 

 National security 
 and sovereignty 

 - Rules on disputed borders 
 - Import/export regulation of technology 
 - Regulation of elections:  Canadian elections modernization  act, US federal 
 campaign finance law 
 -  Data residency:  Many countries have barriers to  cross-border data flows. 

 Application- 
 specific 

 - Advertising:  US truth in advertising, US regulation  of drug advertising 
 - Health:  HIPAA (health insurance portability and  accountability act of 1996) 
 - Financial:  US Gramm-Leach-Bliley act, requirements  for  record keeping, use of 
 social media, truth in lending 
 - Education:  US federal educational rights and privacy  act 

 This  table  lists  a  collection  of  government  regulations  that  affect  enterprises  doing  data 
 science, particularly those deploying data science applications internationally. 

 Another major challenge occurs because data science applications are often 
 supra-jurisdictional, that is, operating across multiple jurisdictional entities of countries or 
 federated states. US privacy law, in the absence of a comprehensive national approach, is 
 growing increasingly complex as states, such as California, Virginia and Colorado, enact their 
 own robust consumer privacy laws. Similarly, a national government will have difficulty 
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 legislating desired limits if they require international agreements or if extra-territorial entities just 
 ignore its rules. Taken to extremes, such issues could cause a country to assert its sovereignty 
 by partitioning its internet to exclude foreign impact – something Russia is implementing, and 
 China has substantially accomplished. Jurisdictional issues are why taxation is listed in  Table 
 14.1  . It is a highly complex topic for data science-based  entities that operate across borders. 

 Our final topic relates to complexity. Both the specification and enforcement of laws is difficult, 
 requiring complex political decisions, highly competent staff, and other enforcement 
 mechanisms. They may be equally complex for both for-profit and not-for-profit institutions to 
 follow, which increases costs and reduces agility. Complexity may result in ineffective or 
 untimely laws, poor enforcement, and reduced innovation. While governments unquestionably 
 have an interest in regulating harms to their countries or population, they must also recognize 
 they may reduce the agility of the technical sector if regulation is not done well, particularly 
 given the complexity and dynamism of data science domains. 

 14.1.2 Legal Challenges – Applying Data Science 

 Organizations face many challenges in interpreting the regulations on data science applications, 
 and then faithfully abiding by the intent and letter of the law: 

 ●  If data science applications operate across jurisdictions, the multiple bodies of laws may 
 be in conflict. Governmental rights or limits of subpoena of data may be different for 
 people who store their data in a different jurisdiction. Data storage and access mandates 
 may be in direct conflict. For example, Apple has accommodated laws in its Chinese 
 market, despite their negative impact on individual privacy, while taking a more 
 protective approach to privacy in the United States.  363  In areas of contested borders, 
 map providers show different borders based on the user's location.  364 

 ●  Privacy regulations on data from a multi-site research study might require sites to 
 maintain an arms-length relationship so the overall study must meet differing legal 
 requirements. Even a single jurisdiction may have conflicting legal requirements. As 
 mentioned, privacy concerns could impact competition so companies have to balance 
 conflicting objectives. 

 ●  An organization experiencing a security breach involving personal information of 
 individuals from multiple nations and US states may have to craft an approach to breach 
 notification that is consistent with both GDPR and the laws of 50 states. 

 Some laws are particularly hard to interpret or follow. The EU Right to Be Forgotten legislation 
 requires search engine companies to determine if certain search results should be delisted, with 
 decisions based on EU guidelines reduced to practice by the companies. As discussed in 
 Section 10.1  , GDPR is another example of a regulatory  framework that is complex to interpret. 
 Societal laws (and expectations) on content moderation force social networks and content sites 
 to make similar determinations. While laws prohibiting foreign payments for political advertising 
 may be clear, it can be very difficult to truly know who ultimately paid for the ads. Many complex 
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 rules regulating advertising vary by the product advertised and the locale where the ad is 
 shown. 

 Laws and regulations require detailed disclosure of policies and actions by data science 
 products and projects. Yet, it is extremely challenging to write end-user licenses or policies that 
 both meet legal requirements and are comprehensible to people with different educational 
 backgrounds. The complex disclosures on many commercial websites show the challenge, but 
 complex disclosures also extend to participants in scientific studies (and even car rentals). 
 Moreover, privacy requirements –for example, transparency– become more challenging with 
 respect to the proliferation of Internet of Things devices. Many of these do not even include a 
 user interface where a privacy policy could be readily displayed. 

 While needed for safety or security, legal requirements can be at odds with the most elegant or 
 efficient way of implementing data science applications. The legal requirements might force 
 complex, expensive, and voluminous record keeping to show organizations are in compliance. 
 Differences between national requirements may prevent cross-border access to global data 
 stores which would allow for more efficient operational and analytical approaches. 

 Understanding legal requirements and complying with them may be expensive, and the added 
 costs might make otherwise worthy projects unfeasible. To minimize expense and maximize 
 compliance, developers can apply data science to continually monitor operations and help 
 applications  F  meet legally mandated requirements,  but this too leads to challenges. Data 22

 science typically operates probabilistically, and the law and public opinion may not accept 
 imperfect results. For example, a 99.99% accurate content moderation system's one in 
 ten-thousand error may generate severe ill-will and be the source of legal violations. 

 Although regulations may be designed to promote fairness and strengthen the competitive 
 landscape, complex regulations can cause even greater problems by advantaging larger firms 
 that have developed the capacity to follow them. Paradoxically, this often makes it harder for 
 new firms to challenge incumbents. Thus, while regulations are an important governmental 
 responsibility, it is complex to craft the right ones. 

 A 2021 survey of tech policy experts by Clifford Chance LLP concludes “The regulatory 
 landscape for AI will likely emerge gradually, with a mixture of AI-specific and non-AI-specific 
 binding rules, non-binding codes of practice, and sets of regulatory guidance. As more pieces 
 are added to the puzzle, there is a risk of both geographical fragmentation and runaway 
 regulatory hyperinflation, with multiple similar or overlapping sets of rules being generated by 
 different bodies.”  365  Readers interested in the current  US legal framework can begin with this 
 overview of US Privacy Laws.  366 

 22  This can become recursive as data science applications monitor the operations of other ones, etc. 
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 14.2. Economic Impacts 

 Chapter 12  discussed data science's complex impacts  on  individuals  and  groups  and illustrated 
 challenges in misleading information, manipulation, fairness, and more. This section examines 
 the economic impacts data science may have on firms, individuals, and markets: 

 ●  Benefits of Scale  : the quantity of data gathered and  used in analysis, the vast 
 capabilities for storing and processing data, and the size of technical design and 
 engineering teams needed to develop large systems. 

 ●  Benefits of Technical Sophistication  : the ability  to apply statistics, optimization, and 
 computer science to important domains with significant impact. 

 ●  Ability to Optimize  : The ability to use scale and  technical approaches to optimize 
 results in ways that have far reaching impacts on marketplaces and consumer behavior. 

 14.2.1 Scale Effects 

 Throughout history, economies of scale effects have benefited many industries. They have been 
 particularly important to the technology sector. Hardware and software systems are expensive 
 and difficult to create, but marginal costs are low and profit margins per unit are high. Commonly 
 used interfaces benefit consumers, but also help maintain a company’s place in the market. 
 Scale effects are very prevalent, particularly in large-scale software and cloud services, globally 
 used communications infrastructure, and semiconductors. However, there are also forces that 
 reduce the need for scale. These include open source software, standard interfaces and 
 protocols that allow for competitive implementations, better programming methodologies, and 
 sophisticated design tools. 

 Data science adds a second dimension to the benefit of scale; many applications benefit from 
 the virtuous cycle. Their data needs can only be met via many commercial relationships and/or 
 significantly engaged users.  F  While there are certainly  “small” straightforward data science 23

 applications, many important applications require great scale. Some may also require complex 
 and expensive systems for data acquisition, storage, analysis, model operation, and more. 

 Non-technical drivers of scale may further encourage enterprises to grow. As the internet 
 provides unparalleled customer access, its international reach may require global workforces. 
 Additionally, for applications relating to the physical world, large scale may require concomitantly 
 scaled logistics and distribution networks. As shown in the previous section, the complexity of 
 legal regulations can favor larger organizations with the resources to understand and meet 
 complex mandates. 

 23  As an anecdote on scale, many of us have used our organization's own internal search, and found that 
 it does not perform as well as web search. This is a scale phenomenon, since even a huge organization 
 of 100,000 employees has about four orders of magnitude less data than a web search engine. 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  206 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 Users may benefit from scale due to both better-quality applications and increased connectivity 
 to other applications. Data science requires scale to build things like search engines, social 
 networks, shared content sites, large-scale online stores, or self-driving cars that work well and 
 mitigate dependability perils. Scale can provide the resources to enterprises to do bold R&D and 
 to enter new markets. 

 Also, Metcalfe’s Law claims that a network's value is proportional to the number of its users 
 squared.  367  While neither a true law nor a fully justified  numerical relationship,  F  gives another 24

 reason why some large organizations keep growing larger. 

 Thus, scale effects are at least part of the cause of a landscape having large, albeit changing, 
 enterprises.  F  One result has been increased market  concentration (notably in the US and 25

 China), causing many constituencies to have concerns about large enterprises’ economic power 
 and influence. Scale motivates antitrust regulators and policy makers to scrutinize the behavior 
 of large organizations, and their continual interest and investigation may make them less agile 
 and more bureaucratic. 

 It is a challenge to balance scale issues that enable technology and data science to support 
 valuable innovation against winner-take-most outcomes. There are clear echoes of this in 
 ongoing regulatory discussions in many regions. 

 14.2.2 Economic Effects on Individuals 

 Building a successful data science application requires people with particular skills: 

 ●  Data science skills: Analytical skills from statistics, operations research, mathematics, 
 certain engineering disciplines, and computer science. 

 ●  Software engineering skills: The largest technical systems require huge amounts of 
 computer software. In 2016, Google’s main repository had over 2 billion lines of code.  368 

 It takes a very sophisticated technical staff to make data science-based systems work. 
 Requisite skills include intricate knowledge of computers and networks' smallest details. 

 ●  Management skills: Coordinating the work of data scientists, product managers, software 
 engineers, reliability engineers, security professionals, ethicists, and more. 

 ●  Leadership skills: Extending data science into new domains requires visionary 
 entrepreneurs with the desire, energy and creativity to do new things and the 
 perspective to do them well. 

 25  Most of the early computer and software companies no longer exist; IBM is a much smaller force in 
 computing and Intel, which more recently looked dominant, is challenged by new processor architectures 
 and, as of 2021, semiconductor leadership by others. 

 24  The true value of a network is proportional to the number of users times the average number of other 
 users they want to connect to, times the average value of the connection. 
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 People with such skills are highly sought after. Data science’s automation and optimization 
 capabilities may enable relatively few people with the right skills to generate great value. A 
 recommendation system can span a huge corpus and signals, doing the work of many human 
 curators. Partial or total automation of truck driving could improve a huge sector's efficiency, but 
 change aspects of the jobs of more than 3 million workers in the US alone. 

 Based on Michael Young’s 1958 book,  The Rise of Meritocracy,  369  he would term data scientists 
 and those who use their work as being meritorious. He says merit arises from “intelligence plus 
 effort,” though today we would more neutrally say “  skill  and effort.” 

 However, despite having coined the term  meritocracy  ,  Young’s book was actually a satire. He 
 was concerned with what happens if meritocracy is pushed too far – in particular, if meritocracy 
 provided excessive benefit to some. Data science may need to be considered in that light, given 
 its outsized rewards. 

 It is true that the founders and designers of a hot new tech giant have created something of 
 value and deserve rewards. It is also true that society at large created the global network and 
 marketplace that made it all possible, so society deserves a share of the rewards. Currently 
 everyone who uses the technology gets some benefit from their use, and many people and 
 institutions are invested in a pension, endowment, or index fund that benefits them when tech 
 stocks go up. However, there have been calls to spread the value more equally, via taxation and 
 other policies. 

 Data science's leverage creates a related benefit to those who use it to gain fame and 
 customers.  Superstar effects  , according to Koenig,  “arise when technologies open up bigger 
 markets and make it possible to reach consumers in larger, perhaps even global markets.”  370 

 Koenig shows demonstrable impacts of broadcast TV on entertainment industry salaries, and 
 relays the concern that new technologies may create more winner-take-all labor markets. For 
 example, recommendation engines can accelerate an individual’s rise to fame, and sharing sites 
 enable global markets. Korinek provides a fuller discussion of Superstar effects.  371 

 Before concluding this section, we return briefly to automation's societal impact on employment 
 levels. This topic first arose in  Section 12.4.4  ,  where it was a byproduct of discussing data 
 science’s impact on being human. 

 While automation has and will continue to raise aggregate standards of living, data-driven 
 approaches will also change work and employment. 

 ●  The tasks that humans do will change, just as the task of bank tellers changed with the 
 introduction of ATMs. 

 ●  However, it is not clear how this will affect employment. There are just too many open 
 questions ranging from the rate at which automation progresses, to the invention rate of 
 new productive activities that require human contributions, to increasing educational 
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 opportunities, to birth and death rates, and more. For example, in contrast to experts' 
 angst in the early 2010’s, unemployment numbers dropped to record lows. 

 Thus, we humbly (or timidly) refer the reader to the many future of work publications including 
 that of the previously mentioned Shift Commission or the MIT Work of the Future Task 
 Force.  361,372 

 14.2.3 Impact of Optimization 

 Data science, paired with the internet's global reach, has created new markets, made existing 
 ones far more global, and lowered economic friction. Purchasers can more easily find 
 specialized products and compare prices and terms from multiple competing products or 
 distributors, often without regard to proximity. Producers have benefited by having access to 
 much larger markets. 

 Optimization, a core data science goal, contributes to economic efficiency, guiding opportunity 
 and human activity to meet important objectives. The flip side is that data science may reduce 
 the roles of the friendships, business relationships, or other norms that previously held sway. It 
 does this by enabling highly optimized decisions, rather than just “satisficing,” a practice that 
 Herb Simon described. He noted that optimization is frequently too difficult and perhaps too 
 risky, so decisions are often made by finding a choice that meets some acceptability 
 threshold.  373  But that was before data science made  optimization easier. 

 Shopping is a great example of how things have changed. For specialized items, consumers 
 used to only have easy access to (mostly) geographically close businesses. For many products, 
 these businesses may have had little near-by competition. Thus, consumers might shop around 
 a bit and make a few phone calls, but ultimately they satisficed. They may have made their 
 choice based on the friendliness of a salesperson, not a product’s technical attributes or 
 absolute minimal price. 

 Information technologies (database management systems and parameterized search), data 
 science (automated recommendation systems and optimized pricing), and sophisticated 
 logistics and delivery systems, have made markets more competitive. Companies need to 
 compete more aggressively on quantifiable metrics. The market rewards superior products or 
 services and exposes inferior and more expensive ones. Modern systems focus on optimization 
 and have created situations where different types of institutions or certain regions may flourish. 
 As observed previously, scale effects sometimes lead to “winner takes most” outcomes, at least 
 in the short-term. 

 The internet's global nature and data science's ability to cross international borders allows for 
 global optimization and competition. Manufacturing products in the developing world is often of 
 significantly lower cost than in wealthier countries, so data science and information technology 
 direct and facilitate the flow of global goods and services there. Technology has contributed to 
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 greatly reducing global poverty levels, but per capita GDP growth's benefits have not accrued 
 uniformly. 

 Finally, we note that successful optimization often requires organizational scale, as discussed in 
 Section 14.2.1  . 

 14.3 Acting Ethically 

 Throughout  Part III  of the book, we have described  numerous challenges in the application of 
 data science. We have argued that practitioners need to have ethical principles in mind as they 
 consider the techniques they use and the decisions they make. As stated previously, continual 
 reflection forces data scientists to consider difficult challenges, acts as a check on significant 
 errors, and motivates practical improvements. 

 The clearest obligation of data scientists and their organizations is adherence to professional 
 codes of ethics covering truthfulness, integrity, and similar issues. Addressing the broader and 
 more varied socio-technical complexities in developing and deploying data science are more 
 challenging. This is true even if organizations have realized the benefits of acting ethically, 
 whether from altruism, desire to gain long-term customer trust, minimize regulatory oversight, or 
 recruit and retain talent. These challenges include: 

 1.  Potential tensions between individual incentives and organizational goals, particularly 
 when framed in terms of optimization. 

 2.  Uncertainty  of  how  an organization motivates itself  to achieve ethical standards and  who 
 in the organization is directly accountable and able to ensure it follows ethical processes. 

 3.  The gap between general, shared principles and specific, actionable policies. 

 Each of these may seem abstract, but we will elaborate below and discuss some representative 
 problem cases. 

 14.3.1 Incentives: Organizational and Individual 

 Organizations advance by breaking complex missions into simpler goals. Within a university, 
 this can mean well defined but separate goals for its research, teaching, and university 
 administration functions. Within a company, some teams are primarily motivated by engineering 
 goals, some by revenue, some by employee happiness, etc. 

 This separation of concerns risks an unintended consequence if individuals successfully 
 optimize their group’s objectives in a way that is ultimately inconsistent with the larger mission or 
 its ethical objectives. In academia, individual researchers have, among other incentives, the 
 incentive to maximize their publications and grant dollars. Sales team commission-based 
 incentives may motivate different behavior than quality-assurance team reliability-based ones. 
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 The risk of scientific or ethical misconduct is why universities create conflict-of-interest offices 
 and  institutional review boards  (  IRBs  ). The process  of peer review (within a department or at 
 a journal) is another check on maximizing individual success metrics (more publications) at an 
 overall mission's expense. Companies also have resolution mechanisms for balancing different 
 team objectives. 

 For example, a data science application could have a development team divided into subteams 
 that focus on only a part of a complex user journey (e.g., configuring an app, using an app 
 frequently, or clicking on in-app purchases). Individuals in the teams are then charged with 
 meeting distinct metrics, sometimes termed Key Performance Indicators or KPIs. This 
 divide-and-conquer approach comes naturally to technologists and the quantitatively minded. 
 However, the challenges of constructing subtasks whose optima coincide with the best overall 
 organizational strategy are daunting. Notably, this challenge is an organizational analog of some 
 of the competing objectives challenges raised in  Section  12.2  . 

 In the case of a digital app’s user journey, premature optimization of in-app purchases could 
 drive down long-term customer retention. Especially when it was achieved via so-called  dark 
 patterns  of manipulative design choices, such as misleading  button descriptions or a 
 “purchase” button placed so near to “close popup” as to cause inadvertent purchases. When 
 goals are divided among teams, this can lead to suboptimal solutions as well as inter-team 
 rivalries that destabilize an organization. Challenges are even more formidable when they 
 include difficult-to-quantify goals such as a commitment to an ethical process. 

 The Belmont commissioners recognized the need to align individuals’ goals with mission and 
 ethics. They ensured that both the Belmont Report authors and members of the report's 
 proposed IRBs included not just researchers but individuals representing a variety of views, 
 including law, philosophy, and policy. In  Part IV  ,  we discuss the careful planning and process 
 needed to maintain individuals’ alignment with organizational mission, including ethical 
 considerations. 

 14.3.2 Governance: Locating Ethics Within an Organizational Chart 

 A CEO, university president, or other top leader has the ultimate responsibility for an 
 organization’s ethics, particularly for balancing the competing incentives raised in the previous 
 section. But no one person can ensure that  all  of  the organization’s actions will be ethical – an 
 awareness of ethics must be infused throughout. 

 Particularly in data science, many teams make highly technical decisions on data quality, 
 dependability, and balancing objectives. These decisions are often local to a particular 
 technique, technology, or sub-business, yet have broad implications. 

 But if everyone “owns ethics,” it is challenging to ensure: 
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 1.  Employees are informed of all ethical principles and processes. 
 2.  Employees begin with a shared ethical consensus. 
 3.  Employees take their responsibility to apply these principles seriously and do not fall into 

 the trap of assuming that “someone else will worry about the issue at hand.” 

 The cultural and educational challenges are very real. Making ethics everyone’s equal 
 responsibility gives everyone a sense of agency in defining ethical practice. An emphasis on 
 ethical responsibility may also benefit an organization’s ability to recruit and retain talented 
 people for whom ethics are a priority. However, merely stating broad responsibility does not 
 define a process for resolving individual disputes or ensure that ethics are prioritized uniformly. 

 Distributing ethical agency and accountability works better in organizations operating with 
 enlightened self-interest. This is when most individuals realize what’s best for the community is 
 also best for themselves or their team, at least in the long term. However, not every organization 
 enjoys such universal enlightenment. Also, there is an efficiency concern. Organizations are not 
 usually democracies, and even democracies require that decisions be delegated so they can be 
 made expeditiously. 

 To address both of these shortcomings, organizations sometimes create an ethics group to 
 “own” the more integrative ethical objectives. This group takes responsibility for defining, 
 communicating, and ensuring a high standard for ethical processes. Such a group can guide 
 analysis of ethical decisions, ensure ethical processes are applied, and adjudicate disputes. 
 While this can be a valuable addition, there is a downside: the group’s existence could provide 
 the rest of an organization with a convenient excuse to ignore ethical concerns. 

 For example, a university with a separate IRB (which, by design, applies only to human subjects 
 research) facilitates researchers focusing on publication and grant writing goals while only 
 considering ethics when a study must go through IRB review. This may also prevent others from 
 developing the “habit” of analyzing decisions about their ethical impact; individuals may reason 
 they can just leave ethics to the ethics review. 

 Note that challenges with an ethical focal point occur whether ethical responsibilities are given 
 to a new subgroup or an existing team, e.g., legal or compliance. Assigning ethics to an existing 
 team also risks conflation of the ideas (e.g., blurring the lines between ethical questions and 
 legal ones) and prevents developing ethics expertise as a separate skill. 

 Despite the complexity, organizations often arrange themselves such that: 

 1.  A president or CEO takes ultimate responsibility for ethics by setting policy and being 
 responsible. 

 2.  Each individual or team is informed of and expected to abide by the relevant ethical 
 principles and processes. 
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 3.  A designated ethics group is empowered to make certain decisions, particularly when 
 individuals disagree. 

 Coordinating this multifaceted strategy is also complex; we return briefly to this point in  Section 
 19.2  . 

 14.3.3 From Principles to Policies 

 Connecting high level principles to policies and decisions takes great effort. The principlist 
 approach to ethics requires that an organization first commits to stating principles. They must be 
 sufficiently general to be useful in a wide variety of contexts. Both internal and external 
 stakeholders must understand them as legitimate goals. 

 However, the principles must also be sufficiently clear and specific that a community can use 
 them to guide decisions, constrain bad outcomes, and reach a consensus about the 
 decision-making process' integrity. Moreover, these principles, particularly with changing 
 technology and norms, periodically need to be re-evaluated and possibly updated. Just as some 
 countries have evolving case law that results from detailed and evolving court decisions, 
 organizational experience can lead to more prescriptive rules that make ethical principles easier 
 to apply. 

 As an engineering example, in Summer 2021 Facebook’s Reality Labs tried to set a responsible 
 course for future augmented and virtual reality work. They enumerated four high level principles, 
 but the true challenge is the difficulty of applying them to good effect: 

 ●  "Never surprise people" (transparency); 
 ●  "Provide controls that matter" (informed consent); 
 ●  "Consider everyone" (justice); 
 ●  "Put people first" (community above individuals or business); 

 Their website states, “Everyone at Reality Labs is responsible for upholding these principles, 
 with dedicated teams focused on ethics, safety, security and privacy. These principles will 
 continue to evolve as we seek and receive feedback on our principles and products.”  374 

 Research and product development teams must take different steps to bridge the gap between 
 stated, commonly-agreed general principles and individual decisions. For product development, 
 this includes specifying questions teams can review during a digital product's life-cycle. At 
 different data life-cycle stages, different ethical questions are most appropriate. Privacy is more 
 apropos to a data gathering phase, while objective-setting is more relevant to modeling and 
 product design. 

 As for academic research, its ethical process happens at two different scales: 
 ●  Infrequent formal review, as by the IRB. 
 ●  Frequent informal peer review including funding proposals, research publications, and 

 individual promotions. 
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 Integrating ethical principles into the career development process, including hiring and 
 promotion decisions, helps keep incentives aligned between organizations and individuals. 

 As emphasized above, data science presents particular challenges in applying ethical 
 principles. Companies developing automated decision systems must deal with how they can be 
 complex and opaque in ways that obscure potential harms and biases. Every organization has a 
 responsibility to build, refine, and improve their habitual critical inquiry into ethical issues. Their 
 inquiries must take place both across an organization and throughout data science product 
 life-cycles. 

 14.3.4 Example Challenges in Ensuring Ethical Consideration 

 Content recommendations, whether as a news feed or a “recommended for you” feature, 
 illustrate the above challenges. An engineering organization with separate teams for maximizing 
 engagement (e.g., clicks), maximizing revenue, and surveying user satisfaction, might see them 
 optimize for contradictory goals. 

 There needs to be shared principles of sufficient specificity, or an organizational structure which 
 maintains alignment. Otherwise, such disharmony can frustrate data scientists and increase the 
 risk of ethical harms to users. These harms include addictive or coercive design choices and 
 algorithms which maximize clicks by promoting disinformation from user-generated content. 

 As discussed in  Section 6.6  , automated decision-making  tools in the criminal justice system 
 present ethical challenges in achieving fairness while aiming to reduce crime. They could 
 optimize for accuracy on training data yet not achieve fairness (technically) or justice 
 (societally). Investigative journalism can also provide an important check on misalignments. 

 Also consider an application that uses personal GPS data to recommend workout regimens. 
 Team members that produce it are aligned in thinking engagement metrics are a win-win. Higher 
 engagement benefits clients by encouraging more exercise and is also good for business. 
 Presumably, employees do not want to harm their users. 

 Even such a simple application produced by a well-meaning company has at least two 
 challenges: First, how do they ensure techniques that increase engagement do not encourage 
 risky behavior? Second, how much more data analysis and engineering should the company do 
 to make work regimens safer and better? For example, engineers could gather and apply 
 additional data such as outdoor temperature, humidity, pulse-rate, heart-rhythm, etc. It’s hard to 
 know how much is needed and when to stop. 

 Our final example is about the complex incentives that science communicators deal with. These 
 could include organizational productivity goals, which aim to maximize publications, research 
 grant dollars, and mentions in popular press. In the long-term, peer review aligns these with 
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 research excellence, but short-term goals often incentivize publishing too quickly or interpreting 
 results too broadly. The latter can be particularly easy when researchers publish outside their 
 expertise or cannot fully evaluate the breadth of their results’ potential impact. 

 All of the above were on clear display during the rush of COVID-19 related publications. Of 
 course,  public health policy needed excellent research  done quickly  . However, the many 
 retractions at  RetractionWatch.com  are evidence that  scientists were indeed both moving fast 
 and sometimes breaking things.  375  Additionally, as  discussed in  Section 4.6  , the predictive 
 power of mortality modeling was sufficiently limited that interpreting it as  prescriptive  to public 
 health policy was a leap of faith not always supported by statistical significance. 

 Communicating uncertainty is difficult for data journalists and data scientists, but is necessary to 
 keep incentives aligned in the long-term. In epidemiological emergencies and similar events, it 
 is also needed to protect the public from harm. We remind the reader of Mosteller’s warning that 
 “It is easy to lie with statistics; it is easier to lie without them.” Nonetheless, individual and 
 organizational incentives must not override scientists' responsibility to accurately represent 
 results, warts and all. 

 These examples showed the complexity of balancing teams with different incentives. Multiple 
 teams need an organizational structure that can adjudicate disagreements and ensure someone 
 assumes ultimate responsibility. Finally, team members need coherent ethical views and defined 
 processes that ensure ethics are a factor in decision-making. 
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 Recap of Part III – Challenges in Applying Data Science 

 Part III  addressed challenges motivated by the Analysis  Rubric: 
 ●  Chapter 8  ,  Chapter 9  , and  Chapter 10  addressed the  technical issues of gathering good 

 data, developing a model providing the needed insights or conclusions, and sufficiently 
 considering privacy, security, abuse, and resilience. 

 ●  Chapter 11  ,  Chapter 12  , and  Chapter 13  addressed the  requirements-focused issues of 
 providing understanding, setting proper objectives, and being appropriately tolerant of 
 failures. 

 ●  Chapter 14  addressed a collection of ethical, legal,  and societal issues. 

 Notably, all of this part’s chapters address ethical issues, either implicitly or explicitly. For 
 example, data collection raises questions on proper bounds for personal data gathering and 
 retention; setting objectives raises issues of fairness or manipulation; and the difficulty of 
 providing understanding raises issues of integrity.  Chapter 14  ’s explicit ethics discussion 
 focused on the meta topic of how to have the right organizational incentives and structures to 
 best achieve ethical principles. 

 We hope our list of challenges motivated many difficult questions and illustrated that their 
 answers are nuanced. Here are some examples: 

 ●  How do we balance data's enormous value with the risks from its collection and storage? 
 ●  What are the limits to data-driven models? 
 ●  How can we avoid applying data-driven models in ill-suited domains where they are 

 likely to yield poor answers and be counter-productive? 
 ●  Can we meet data science’s increasing dependability (privacy, security, 

 abuse-resistance, and resilience) needs as we address ever more important problems? 
 ●  How can we educate data scientists, prospective data science users, and the public to 

 exercise care with data science's powerful, but risky capabilities? 
 ●  For every data science application, what objectives achieve our primary goals 

 (educational, health, economic, entertainment, etc.) while minimizing risks (polarization, 
 dissemination of falsehoods, or unfairness). 

 ●  Does a government using big data and clever optimization yield a better society, or does 
 it enable ever more creative strategies to sustain and enrich itself? How can we 
 minimize the latter's chances? 

 ●  Will data science lead to a beneficial growth in wealth or will it lead to excessive wealth 
 concentration? 

 We could write pages of additional questions. In fact, we plan to have them on the book’s 
 website,  DataScienceInContext.com  . We hope we have  catalyzed our readers to ask more 
 given the challenges and ambiguities of data science. 
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 Let us end similarly to how we started, noting our primary goals of providing a broad and 
 coherent survey of the field and motivating a consideration of the needed balance of the 
 opportunities and challenges of data science. We also hope our framework is useful for readers 
 who wish to delve deeper. 
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 Part IV. Addressing Concerns 
 Data science has been successfully applied in many applications, and it will be applied to many 
 more. New techniques, greater computational power, and creativity will combine to make 
 currently impossible and impractical applications feasible. Individuals and institutions dependent 
 on data science for their success are likely to become even more so. Growth indications such 
 as new products, attendance at research conferences, and job opportunities all confirm the 
 opportunity. 

 However, there are very significant societal concerns about some of its impacts, which arise in 
 part from  Part III  's challenges. While these concerns  were minimal a few decades ago when 
 data science usage was in its infancy, they have grown substantially in recent years. This could 
 be due to increased public awareness of data science applications, their use in more important 
 domains, perceived or actual harms, the availability of larger and more complex data sets (in 
 both the private and public sector), or expectations of increased future risks. Data science's 
 societal issues are now at the top of mind in many business, economic, political, and ethical 
 circles. 

 Chapter 15  summarizes these concerns. Later chapters  then make recommendations in areas 
 relating to: 

 ●  Education and intelligent discourse  (Chapter 16) 
 ●  Regulation  (Chapter 17) 
 ●  Research and development  (Chapter 18) 
 ●  Quality and ethical governance  (Chapter 19) 

 Our recommendations are pragmatic so as to avoid unintended, negative consequences. 
 However, we humbly admit we are not politicians, political scientists, lawyers, or seers, and 
 acknowledge our recommendations may be narrower than some might prefer. They are also our 
 own views and not that of any institutions with which we are affiliated. 
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 Chapter 15. Societal Concerns 

 There are several reasons why the stakes for data science and its related information 
 technology have grown: 

 ●  Usage communities have become very large and, in many cases, global. Users both 
 contribute data and are positively or negatively impacted by its use. Even individuals 
 who are not users of systems may be indirectly affected due to societal impacts. 

 ●  Data science and its applications affect nearly every facet of our lives in increasingly 
 serious ways. They have progressed from recommending cat videos to recommending 
 news that drives voters’ decisions: from translating language as a curiosity to 
 translations affecting vast populations; from personalizing advertising to personalizing 
 medicine, and many more. 

 ●  Changes arising from data science are often disruptive, advantaging some and 
 disadvantaging others. Also, harm may occur because data science can provide 
 powerful benefits to individuals or institutions, which in aggregate lead to problematic 
 societal impacts. 

 ●  Data science is not always applied well. Sometimes, this is due to a lack of care in its 
 application, but other times it is being applied in unanticipated, unwanted, and perhaps 
 illegal ways. There are problems from plain thievery, nation-state goals of influence or 
 spying, or bad actors intent on creating mayhem. The potential for financial gain or other 
 power attracts very well-funded manipulators, including individuals, companies, political 
 parties, and nation states. 

 ●  People aren’t well-informed about the conclusions data science presents to them or how 
 they were derived. 

 ●  Many societies are increasingly sensitive to issues of fairness and expect data science 
 applications to contribute to solutions, not to only maintain the status quo. This is even 
 more challenging because there may not be broad agreement as to what the goals 
 should be. 

 This chapter's goal is to summarize these concerns, informed not only by what we in the field 
 read and hear but also by  Part III  ’s challenges. For  example, we regularly hear about societal 
 concerns over the influence of very large, data-science-oriented companies – concerns that 
 arise in part from both the economic benefits of scale and the complexity of solving hard 
 problems. We also understand societal concerns over social network-induced divisiveness, 
 which arise in part from challenges in setting competing objectives and in controlling abuse. 

 15.1 Enumerating the Concerns 

 Table 15.1  summarizes the issues, with the following  prose explaining its rows in greater detail. 
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 Table 15.1 Societal Concerns and Relevant Major Technical Challenges 
 Societal Concerns 

 Most Relevant Challenges from Part III  General  Specific 

 Economic & fairness 
 impacts: People and 
 institutions 

 Institutional scale & competitive playing 
 field 

 ELSI/societal optimization & differentiated gain, 
 ELSI/legal 

 Differentiated individual benefit: 
 Income and employment 

 ELSI/societal/individual gain on merit, 
 objectives/concerns to the individual, 
 impact on being human 

 Broader questions of fairness  Objectives/fairness, models, toleration of failures 

 Personal implications 
 to data 

 Confidentiality of information  Dependability/privacy, dependability/security, 
 toleration of failures 

 Individual concerns of manipulation  Objectives/concerns to the 
 individual/manipulation, dependability/privacy, 
 models 

 Data deluge, concerns regarding 
 mis- or imbalanced information 

 Understandability/deserving trust, objectives, 
 toleration of failures 

 Institutional and 
 societal operation and 
 governance 

 Divisiveness/freedom of expression  Objectives, ELSI/legal, toleration of failures 

 National governance and sovereignty  ELSI/legal, dependability/security 

 Other security risks  Dependability/security, ELSI/legal 

 Environment  Power consumption  Models 

 Trust  Quality/trustworthiness of data science 
 applications 

 All 

 This  table  shows  six  categories  of  societal  concerns  about  data  science.  The  degree  of  data 
 science’s  impact  varies  greatly.  The  2nd  column  adds  a  little  more  specificity  to  the 
 concerns.  The  3rd  column  lists  some  of  Part  III  ’s  challenges  which  contribute  to  the  concern; 
 the data ELSI/ethics thread underlies all of them. 

 The first group, labeled  Economic & fairness Impacts:  People & institutions,  addresses the 
 balance of rewards and harms that accrue from the application of data science: 

 Institutional scale & competitive playing field.  Both  the virtuous cycle phenomenon and 
 economies of scale may encourage market concentration and advantage large 
 institutions. Additionally, the hyper-optimization that data science facilitates may benefit 
 firms that can win on quantifiable metrics. These are often the firms large enough to 
 amass both the necessary data and economies of scale to be effective. This topic is 
 motivated not just by antitrust discussions, but also from multiple sections of  Chapter 14 
 on legal, societal, and ethical challenges. 

 Differentiated individual benefit: income and employment.  Optimizations and automation 
 made possible by data science may change the nature and availability of jobs and 
 provide economic leverage to individuals who can effectively employ it. As automation 
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 reduces opportunities in some sectors and increases them in others, it may also result in 
 more job churn and associated economic instability. 

 A major concern is whether education and retraining can happen fast enough to “smooth 
 the hump,” allowing affected individuals to move to new jobs in growth areas. In the 
 fullness of time, there are concerns about the aggregate impact of automation on 
 unemployment, though more automation may benefit many societies given the decline in 
 working age populations, the growth of elderly needing care, and the likely increase in 
 aggregate productivity. Most generally, there are concerns that data science may 
 contribute to inequality and economic security issues for some individuals or groups, as 
 discussed in  Section 14.2.2  , Economic Effects on Individuals. 

 Broader questions of fairness.  Many societies' increased  focus on fairness has caused 
 increased scrutiny on whether data science's benefits and harms are balanced across 
 different subgroups. Given the breadth of exceedingly important applications data 
 science now powers, data scientists must focus on this issue, as highlighted in the 
 challenges of  Section 12.3  on fairness objectives  and  Chapter 9  on technical 
 approaches to models. 

 The second group, labeled  Personal implications to  data  , addresses concerns individuals may 
 have with increasing use of their data: 

 Confidentiality.  Individuals are concerned that captured  and recorded information is often 
 lost or otherwise divulged to others. Whether due to confusing or flawed privacy policies 
 or implementations or due to security break-ins, individuals are concerned about the 
 release of geographical, financial, medical, and other data. The challenges of loss of 
 confidentiality were addressed in  Chapter 10  ’s privacy  and security sections. 

 Individual concerns of manipulation.  Individuals are  concerned about economic, location, 
 health, interpersonal, and other sensitive data being used in possibly manipulative ways 
 against their long-term interest. These concerns are related to the challenges relating to 
 personalization and manipulation of  Section 12.4  and,  of course, privacy in  Section 10.1  . 

 Data deluge.  The proliferation of data paradoxically  may make finding underlying truths 
 harder. A general lack of understanding of data, causality, and potential errors may be 
 leading to less understanding. Many are also concerned about the proliferation of fake 
 news and echo chamber effects. Related challenges arose from  Section 11.4  on 
 deserving trust and  Chapter 12  on setting objectives. 

 The third group,  Institutional and societal operation  and governance  , addresses concerns that 
 data science may impede the operation and governance of societies: 

 Divisiveness/freedom of expression.  Despite the importance  of freedom of expression 
 and its legal protection in some countries, many are concerned about the potential 
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 divisive and destabilizing effects of algorithmic approaches to information dissemination. 
 These include over-amplification of certain points of view, suppression of others, and 
 promotion of outright falsehoods. 

 Data science can inadvertently facilitate bad actors who use scams or misinformation to 
 harm society. It may also be used to promote good, but what some think of as good, 
 others may consider to be manipulative or even tyrannical. These issues were discussed 
 in  Chapter 12  relating to the challenges in setting  objectives and  Section 14.1  on legal 
 challenges. 

 National sovereignty  . Technology itself operates without  regard to national borders, so 
 nation states have concerns regarding their ability to establish norms, rules, and 
 protections for their own territories. Specific concerns relate to protection and mandates 
 for storage and cross-border flows of personal data, rules on promulgation and 
 presentation of information, regulation of commerce including political advertising, and 
 taxation. 

 While not an entirely new problem, data science's growth has made it more prevalent 
 and significant. It has grown as technology and data science have become central to 
 everyday life Discussions of related challenges were in  Section 10.2  on Security (a 
 source of many international risks) and  Section 14.1  on Legal Issues. 

 Other security risks.  Data science provides new attack  vectors against important societal 
 systems, such as leveraging vulnerabilities triggered by data manipulation. Attacks could 
 affect healthcare, transportation networks, utilities, financial systems, and more. As in 
 the previous concern, the discussions of related challenges were in  Section 10.2  and 
 Section 14.1  on security and legal issues, respectively. 

 The fourth, labeled  Environment  , addresses the concern  that the power consumption of data 
 science applications may contribute to climate change, as mentioned in  Section 9.3  . It is beyond 
 our scope to attempt to balance the energy ledger resulting from the benefits and harms of 
 substituting online shopping, virtual meetings, e-books, etc. against physical goods and travel. 
 But there is no doubt that they (in particular, certain types of computationally intensive machine 
 learning) consume significant power and are hence an increasing concern. 

 The last and very broad category is  Trust  . With so  many now dependent on data science’s 
 proper application, people cannot help but be concerned by widely differing viewpoints on some 
 applications’ value and on well-publicized problems or failures. The latter occur for many 
 reasons, but they include insufficient care in specification and engineering, difficulty in balancing 
 commercial and ethical objectives, and even the lack of clarity of governing laws. Many may 
 have decreased trust because they do not understand the complex landscapes that data 
 science powers. 
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 15.2 Perspective Behind our Recommendations 

 A blunt approach to addressing data science concerns would be to try to slow or stop its 
 adoption. As previously mentioned, some might take comfort in a more leisurely pace of 
 advances. However, dampening innovation will not happen. If anything, its pace will more likely 
 accelerate. Some reasons are: 

 ●  Data science and its technology underpinnings now provide too many present and 
 near-term benefits to reverse course. There continue to be high hopes and even 
 demands for the future. 

 ●  Countries and regions are aggressively competing with each other to “win” data science 
 competitive races so they gain economic, geopolitical, and military advantages. As in all 
 races, speed is of the essence. For example, China is proceeding at full speed towards 
 its goal of being the global leader in artificial intelligence by 2030.  376  Many other 
 countries, the United States included, have taken notice and are increasing their data 
 science efforts.  F 26

 ●  This competition among nations cannot be controlled, and treaties to suppress science 
 and technology rarely work. Even rules fostering nuclear non-proliferation have barely 
 hung on, despite nuclear warfare’s overwhelmingly worse risk profile and the much 
 greater ease of detecting cheating. 

 Co-author Alfred attended the February 2020 Ditchley Conference on Technology, Society, and 
 the State. This was a meeting of an international group of government and military officials, 
 academics, technologists, and business and labor leaders concerned with the broad impacts of 
 technology, particularly data science.  377  Even among  that diverse group, there was no support 
 for going backward or slowing innovation, despite amorphous concerns that technology may just 
 be moving too fast  378  or concrete ones of changing  employment opportunities. Instead, there 
 was general agreement that technology and data science need to progress rapidly, but with the 
 proviso that we must make progress on government and other societal structures to address 
 problems that will inevitably be created. 

 Our recommendations are thus guided by the twin needs to retain a creative environment that 
 supports the vast investments in time, capital, and human creativity to increase data science’s 
 benefits, while simultaneously reducing its risks. In the following chapters, we discuss what we 
 can do to sufficiently educate ourselves. This includes crafting rational policies, norms and 
 regulatory regimes as well as establishing enlightened agendas for research and engineering. 
 Importantly, it emphasizes including quality and ethics in all we do. Our recommendations 
 represent what we believe is reasonable today, though circumstances may change over time 
 and be different in different regions. 

 26  As of early 2022, there are two separate bills before the US congress, and many think one will become 
 law. 
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 Chapter 16. Education and Intelligent Discourse 

 Your authors, who have substantial background as academicians, unsurprisingly believe in the 
 importance of education and rigor in the definition and use of vocabulary. More education helps 
 individuals by enhancing their ability to understand data and data science's growing impact, and 
 to both contribute to and benefit from the field. A more knowledgeable public and a clear 
 vocabulary for discourse would permit better communication and debate. 

 16.1. More Data Science in the Curriculum 

 The prevalence of data science and the diversity of its impacts, from personal/social life to 
 school/work life to politics/international relations, argue for increased educational focus on data 
 science at all levels. A National Academies 2018 study strongly makes this case, and while 
 focused primarily on undergraduate education, it also argued for increasing focus in K-12.  379 

 Recommendation 1. Broaden Educational Opportunities in Data Science 

 6.1.1 Primary and Secondary Education 

 To educate all members of the public about data science, it must be covered in primary and 
 secondary schools. We recognize the problems with fitting new material into an already 
 constrained curriculum and suggest two approaches. 

 First, many data science topics can and should be taught alongside the sciences and social 
 sciences for mutual benefit. We call this teaching  DS+X  (data science in conjunction with other 
 fields, X), a modest expansion of  CS+X,  a term that  co-author Alfred has used to express the 
 importance of fusing computer science with almost every other discipline.  380  For example, we 
 might teach simple statistical techniques in physics laboratories, demonstrate the power of 
 visualization in history or social studies classes, and provide programming tools to allow 
 hands-on data manipulation of datasets relevant to a specific curriculum. In very early grades, 
 we could expose students to data – collecting it, doing simple analysis, and even raise ethical 
 questions about its use. The integration of data science topics with traditional subject matter 
 would improve education in both. 

 Second, we also think that many students should take a specific data science class, which 
 should replace calculus (despite its pre-eminence as one of the most beautiful modeling tools) 
 or possibly some other parts of the high school mathematics curriculum. While we have resisted 
 giving this advice for years, there is clearly enough accessible, yet intellectually deep, material 
 for a course. Furthermore, data science and technology-related material is likely to be much 
 more useful than calculus for most. Of course, many students who continue to higher level study 
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 in many disciplines, including data science, will still need to learn calculus. Steven Levitt makes 
 many of these arguments in his podcast,  America’s  Math Curriculum Doesn’t Add Up  .  381 

 In high school, a specific data science course would likely be grounded in computing and 
 statistics. If not a requirement for college tracked students, such a course should at least be 
 widely available. 

 We believe the growing awareness of data science's ubiquity will motivate many to consider this 
 proposal strongly. However, we also recognize the many challenges of changing school 
 curricula: 

 ●  Responsibilities for establishing new curricula are decentralized 
 ●  Curriculum mandates change slowly 
 ●  Curricula must be in accord with college admissions expectations 
 ●  Courses must prepare students for first-year level college courses 
 ●  Where data science needs more computing equipment, it must be provided 

 There is also a need for teachers well-trained in data science. We note that well-engineered 
 data science and technology platforms might be able to augment teachers and help achieve 
 broad and cost-effective education. 

 Table 16.1 Suggested General Education Topics for Data Science 

 Area  Explanation 

 Mathematical and statistical skills  Explanation of the notion of models. Ability to analyze data and 
 perform the necessary mathematics. Probability and statistical 
 knowledge. Correlation and causality. Introduction to optimization. 

 Algorithms, abstractions, and 
 programming 

 Understanding algorithms, computational abstractions, and simple 
 programming based on application to data science-related issues. 

 Examples of data science 
 applications 

 Knowledge of data science's challenges, uses, and potential in a 
 variety of domains. Examples would be used in the above rows. 

 Critical reading and analysis  Critical reading and analysis of important contemporary data 
 science applications to show both the exposition of truth and the 
 promulgation of falsehood. Use of historical and contemporary 
 examples should be a significant part of the curriculum. 

 Humanist, societal, and ethical 
 challenges of data science 

 Understanding the implications of data science and technology's 
 growth on economic, political and social systems, as well as 
 everyday life, and teaching an ethical lens. 

 The  first  three  rows  build  off  of  co-author  Jeannette’s  Computational  Thinking  viewpoint,  382 

 extended  with  a  more  specific  focus  on  data  science.  The  fourth  and  fifth  rows  relate, 
 respectively, to critical reading of case studies and to humanist, societal, and ethical issues. 

 It is beyond our scope to specify the precise topics to teach, but we suggest consideration be 
 given to the definition of data science from  Part  I  , some of the more important application areas 
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 in  Part II  , and the more important challenges in  Part III  , in particular the need for understanding 
 explained in  Chapter 11  . 

 16.1.2 Post-Secondary Education 

 Higher education must also broadly educate all its students in data science. Curriculum 
 differences across institutions will certainly be typical, given goals (e.g., an engineering vs. a 
 liberal arts focus). While difficult to implement, colleges will need to have courses accessible to 
 students with very varying K-12 levels of student preparation and attainment. 

 Higher education also has a critical role in training true experts in data science and fields where 
 it plays a significant role. In the former category, there may be many different courses and tracks 
 of study due to the field's breadth. Some might focus more on engineering and computer 
 science, statistics or mathematical optimization, application areas, or policy-related topics. 
 Some students may end up seeking advanced degrees in data science, but many are likely to 
 become well versed in data science but receive degrees in related fields. 

 As with technology, the union of data science and other disciplines often produces a sweet spot 
 for great amounts of innovation. To provide the needed interdisciplinary background, many 
 disciplines must offer appropriate courses, perhaps using cross-departmental teachers. In some 
 cases, the courses may vary primarily in their use of examples from different application areas 
 (e.g., biology vs. economics). 

 There are different models for achieving this interdisciplinary approach, as shown by these 
 examples: 

 ●  Berkeley’s wide collection of “connector courses'' from data science to other 
 disciplines.  60 

 ●  Columbia’s jointly designed and jointly taught “collaboratory” courses.  383 

 ●  MIT’s Common Ground classes, which are specially designed to integrate computing 
 and data science concepts with various disciplines.  384 

 We acknowledge there are many more such approaches and classes than we can list here. 

 In some cases, data science and computing have become so linked with another discipline that 
 a new field of study has arisen. Medical informatics and computational biology are early 
 examples respectively dating from the 1970’s and 2000’s. MIT’s much more recent 
 undergraduate major, “Computer Science, Economics, and Data Science,” is another emerging 
 example. 

 The breadth of these topics will necessarily engage faculty in the humanities and social 
 sciences. Data science is a new opportunity for technologists and humanists to co-design 
 courses and ensure students understand they must consider societal consequences. 

 At the same time, data science and technology add greater importance to the humanities and 
 social sciences. It seems counterintuitive, but data science's great changes add to the 
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 importance of studying deep aspects of humanity and society. Humanists and social scientists 
 are even more critical to our future. 

 Finally, we emphasize the importance of teaching data science's societal and ethical 
 considerations in order to remind students of the field's power, the importance of quality work, 
 and the value, yet complexity, of setting ethical objectives. The introduction of these topics will 
 aid students, and hence society at large, in promoting data science for true benefit. 

 16.2 Improve Education by Using More Data Science and Technology 

 We feel that hands-on, immersive instruction makes data science education more effective, 
 helps maintain students’ interest, reduces drop-out rates, and possibly provides teachers with 
 increased leverage that helps a limited number of professionals teach more students. Much 
 more can be done to broadly infuse technology into education, but data science has a particular 
 advantage due to the availability of hands-on technology. 

 Recommendation 2. Use Data Science & Technology in Teaching Data Science 

 There are excellent programming tools ranging from Scratch for beginners to Python 
 programming environments for older students, and finally to custom tools, such as the R 
 Language. There are magnificent visualization libraries, all manners of simulation environments, 
 and platforms tailored to particular application domains. Because students are continually 
 interacting with a computer, to express themselves (or, more formally, code), to experiment, and 
 to validate their work, online tools innately provide immersive education and adapt to different 
 learning rates and styles. 

 In addition to immersive education's direct benefits, data science and technology may help to 
 reduce high education costs, which reduce access to education. This efficiency-focused 
 motivation coupled with COVID-19’s acceleration of technology adoption should prod 
 educational institutions to find ways to utilize technology and data science to make their core 
 educational missions more efficient and effective. While not a new idea  385  and certainly complex 
 for many reasons (which become clear when applying the Analysis Rubric), we speculate there 
 should be ways to use student background and real-time attainment to provide personalized 
 education in accordance with students’ background and learning styles. Such adaptive 
 approaches could help retain student interest and help them to more rapidly achieve their 
 educational goals. 

 16.3 Vocabulary / Definitions 
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 We suspect that many readers have had many informal discussions on privacy, fairness, fake 
 news, and other related topics. We also suspect many of these discussions were unsatisfying. 
 We hypothesize a major reason is that participants do not have clear terminology for expressing 
 themselves on the topics. In fact, we have wrestled with this problem while writing this book. 

 Even if parties agree on some points, issues aren’t clearly decomposed into analyzable 
 sub-topics that can be analyzed. For example, when someone says, “I’m concerned over 
 privacy,” the topic is often so amorphous that a discussion must wait until specific concerns are 
 stated and labeled. Narrower topics are easier to define, and they admit to clearer, perhaps 
 even mathematical, analyses. 

 Recommendation 3. Promote Clear Vocabulary 

 The field should establish and use a clear vocabulary for discussing topics of critical concern. 
 It’s beyond this book's scope to specify  all  the needed  terms, but this section provides two 
 examples and two categories of terms where discourse would benefit from precise terminology 
 with defined meanings. 

 Data science's lack of sufficient agreed-upon terminology is unsurprising due to the field's 
 explosive growth. It takes time to decompose a field into the right sub-fields and to create the 
 right ontologies, particularly given data science's wide breadth. It also takes time to promulgate 
 and popularize the vocabulary.  This effort needs to  be a coalition of academic, government, 
 business experts, and regrettably done without the efforts of Samuel Johnson or Daniel 
 Webster. 

 Table 16.2 Examples of Terms and Categories of Terms Needing Clarification 

 Example Terminology 

 Privacy  Many are concerned about privacy, but the term has so many potential 
 meanings, even some formalized (e.g., differential privacy) that 
 discussions are often at cross purposes. Clarity would benefit by having 
 terms or modifiers that specify whether we are referring to data’s 
 collection, storage, confidentiality, usage for self, or usage for others as 
 in  Section 10.1  and perhaps other meanings. 

 Fairness  There are many fairness measurements based on the specific 
 application and desired outcomes. Thus, individuals discussing whether 
 an application is fair or not need to know the specific fairness criteria 
 being used. Perhaps "fairness" could often have a modifier, such as “with 
 respect to” a specific scale. 
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 Example Categories of Terminology 

 Statistical  Statistics' long history has resulted in it having a broad and clear 
 vocabulary. However, its terms are insufficiently understood or commonly 
 used outside the field. Few know even the most basic terms such as 
 standard deviation, variance, mean, correlation, etc. Knowledge and 
 usage of these terms by data scientists and the public would increase the 
 understanding of results and reduce misinformation. 

 Risk  We need terminology and metrics to define the impact of failures 
 (outright system failures, less well-understood resiliency risks, security 
 attacks, etc.) so we can have crisper discussions of risk-reward ratios. 

 Uncertainty 
 characterization 

 Simple, understandable terminology to express degrees of certainty or 
 skepticism about results might help the public better understand how 
 certain a scientist or journalist is about a data science result. For 
 example, the Intergovernmental Panel on Climate Change (IPCC) has 
 created clear terminology to characterize the confidence in their 
 predictions.  386  Even simple color-coding would be  beneficial. 

 These lists provide examples of few terms and categories of terms, where we need 
 clarification and precise definition to facilitate discourse and analysis 

 We close this section by quoting Aristophanes: “By words, the mind is winged.”  387  William 
 Chomsky, father of well-known linguist Noam Chomsky said, “we think in words, by means of 
 words.”  388  With the right words, we could have much  greater understanding, far better debate 
 with less noise, and more rapid progress. 
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 Chapter 17. Regulation 

 Given data science’s wide use, the broad acceptance of its potential, and international 
 competition for rapid invention and deployment, we have argued that coarse regulation to 
 prevent data science progress is highly unlikely. We have also noted that any regulation is 
 complicated by many factors including the internet's cross-border aspects and that existing legal 
 frameworks were not written with data science in mind. 

 On the other hand, as societies and their processes become more complex, there is much 
 precedent for highly specific regulation mechanisms. Some are legally mandated, some are 
 established by voluntary trade groups, others arise due to business rationales (e.g., to minimize 
 insurance costs), and some just become de facto societal norms. We focus on just a few topics 
 and refer the reader to a vast and growing literature on regulation coming from public policy, 
 economic, technology, and legal perspectives 

 17.1 Regulation: De Jure 

 This section includes recommendations for de jure, or legally mandated, regulation. 
 Recommendations  4  and  5  address new regulations that  might be made to data science 
 applications.  Recommendation 6  addresses issues with  current laws and regulations that could 
 make it difficult to deploy some data science applications.  Recommendation 7  addresses the 
 impacts of data science and technology on the scale of enterprises. 

 Recommendation 4. Regulate Uses, Not Technology 

 How well technology works in a particular application varies greatly. This means regulatory 
 approaches must focus on a situation's specifics. Below, we present examples showing that 
 regulatory regimes must attend to situational details. 

 For example, facial recognition's varying accuracy in different populations has been clearly and 
 publicly stated, even though work is underway to rectify its shortcomings. This means if it is 
 used to screen for crime, some people may be unfairly subjected to more false positives than 
 others. In some applications, facial recognition may reduce our feelings of privacy and freedom, 
 open us up to snooping by criminals, or allow increased extra-judicial government monitoring of 
 populations. 

 However, there are also many applications where facial recognition is useful and 
 uncontroversial. For example, unlocking cell phones or helping us search our photo collections 
 for friends or loved ones are innocuous. 
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 As another example, fears of warfare driven by machine learning make some suggest a blanket 
 prohibition on using data science for autonomous military targeting. There are use cases where 
 it would be unethical, destabilizing, or just militarily dubious to deploy autonomous weaponry. 
 But it is hard to make a clear definition of “autonomous operation.” The autocannon made its 
 first appearance in 1903, and there are certainly use cases where data science and 
 autonomous control would fulfill military objectives with less damage to human life and property 
 than conventional systems. Moreover, prohibiting military technology requires major powers to 
 agree, which has proven very challenging even with chemical weapons that all claim to abhor. 

 Closer to home, we have discussed using data science in parole/incarceration decisions and the 
 complexity of setting, implementing, and meeting objectives relating to fairness, societal safety, 
 and even efficiency. One could ban its use in these settings, but perhaps it would be best to 
 subject systems to very specific regulatory standards, taking into account the ethical issues we 
 discussed in  Section 6.6  and  Chapter 7  . This definitely  requires robust checks and balances, 
 great care in deployment, and ultimately great and open debate. Whether any existing 
 technologies meet the necessary requirements is an important topic with views on both 
 sides.  389,390 

 The same type of argument also applies to self-driving vehicles. There is a great opportunity to 
 save lives, reduce transportation delays, increase highway utilization, and more. However, 
 getting standards and regulations exactly right will be very challenging. While the underlying 
 technology has elements usable in other domains (e.g., computer vision or route optimization), 
 regulatory approaches have traditionally been  sectoral  .  This means that they are specific to a 
 particular, typically, economic sector and regulated with that sector in mind. Regulation would 
 thus be applied to cars as means of transportation, rather than to their specific data science 
 advances. 

 Nowhere is this need for specificity clearer than with respect to privacy. Blanket prohibitions 
 could be legislated on the collection, storage, and use of private data. However, few actions 
 could hamstring future data science applications more than certain types of bans. There are just 
 too many potentially valuable use cases that could be proscribed. 

 For example, large scale genetic data has great potential to detect, prevent, and treat disease. 
 Clearly, this type of information requires high privacy standards and the topic is very complex. 
 Even opt-in promulgation of one’s own genetic code will divulge information about blood 
 relatives. But, blanket restrictions would be counterproductive. 

 Beyond sectoral approaches, we understand that there may also substantive differentiation by 
 particular technology application within a sector. However, many aspects of contemporary 
 society are this way. For example, technology and data science can look to the financial 
 industry, which regularly adds new rules to address new technologies' potential harms (e.g., 
 data-driven, high speed trading) without prohibiting them. Despite their complexity, these 
 regulatory frameworks are generally accepted as useful. 
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 Recommendation 5. Regulate Clear, Not Potential, Problems  F 27

 The obvious risk or regulation is that complexity will become so great as to be stultifying. Also, 
 some who suggest regulatory regimes may do so with the conscious or unconscious motivation 
 to help  their  organization at a competitor's expense.  We thus suggest that problems should be 
 clear  and  broadly agreed to  before we attempt regulation. 

 Another risk is over-anticipating problems that are not yet significant or clear. We should 
 endeavor to fix some problems before they cause harm, to prevent them from becoming 
 ingrained and more difficult to fix than prevent. The clearest examples arise outside data 
 science; e.g., toxic waste sites where the solution is far more expensive than the cost of having 
 had sound waste disposal standards. 

 We must remember that, however well-intentioned, early regulation may significantly suppress 
 innovation at its most vulnerable stage. It may establish overly broad regulatory solutions for 
 amorphous problems that ultimately never occur. Regulations also have many unintended and 
 unexpected side effects. For example, regulations frequently make corporate operations more 
 expensive. As discussed above, this favors larger incumbents at the expense of new and 
 creative market entrants, reducing competition. Finally, once created, regulatory regimes tend 
 not to be revoked but to grow. Thus, it is better, if at all possible, to wait until needed regulatory 
 requirements become clear and then react with precision. 

 Our next recommendation is based on the likelihood that data science will increasingly lead to 
 machines performing activities or making decisions now done by humans. However, the laws 
 and regulations for those activities were written with humans in mind. 

 Recommendation 6. Update Laws with Data Science and Technology in Mind 

 Legal scholars recognize that defining laws requires a mixture of approaches.  392  Some laws or 
 judicial precedents are highly specific and directive to law enforcement and the judicial system. 
 Others allow some degree of prosecutorial or judicial interpretation. There are also established 
 general principles that judges take into account. Laws often establish regulators and grant them 
 the authority to create detailed binding rules. This complexity makes it difficult for 
 data-science-based applications to not run afoul of the law. 

 Consider these examples: 

 ●  While traffic laws reference “safety” as a principle that overrides speed limits, clarification 
 is needed given the still abundant focus on speed limits. Without such focus, self-driving 

 27  This derives from Eric Schmidt’s presentation to the Columbia Data Science Initiative on September 
 14th, 2020.  391 
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 cars will often have to either break speed limits or drive too slowly relative to other 
 vehicles. 

 ●  In the insurance realm, the United States clearly bans redlining, or using zip codes, in 
 any matter of housing-related pricing, including insurance. What is the legality of 
 non-zip-code using machine learning algorithms that behave in some ways as if they 
 did? 

 ●  Liability laws must also be written to account for the increasing operation of autonomous 
 and semi-autonomous agents. Without due consideration, it is ambiguous whether the 
 current system makes it too easy to deploy negligent technologies or practically 
 impossible to deploy good ones because everything has some risk. 

 A different type of problem arises if laws are written so that their mechanistic enforcement 
 becomes mis- or over-enforcement. As example, applying increased sensing and data science 
 together could result in over-enforcement of noise limits, jaywalking, parking violations, minor 
 zoning violations, violations of terms of service, etc. This could be particularly problematic if 
 enforcement tended to single out particular groups. 

 In particular, excess enforcement could result in those least able to navigate or afford the legal 
 system having to deal with an endless number of minor infractions. Thus, laws may need to be 
 revised to take into account they may be enforced literally, rather than just serving as deterrents 
 or assuming that law enforcement officers will be sensitive as to their application. 

 As so many of this book's topics, the relationship of data science (and technology) and the law 
 is the subject of intense focus in academic circles, as evidenced by many new university 
 research centers around the world. 

 Recommendation 7. Consider the Impact of Economies of Scale & the Virtuous Cycle 

 As we argued in  Section 14.2.1  , some firms built on  data science benefit from both technology's 
 economies of scale and the virtuous cycle phenomena. Some firms, particularly ones with social 
 network or communication components, are further advantaged by Metcalfe’s Law. Finally, since 
 regulatory scrutiny adds to the complexity of creating a new business, regulation may tend to 
 “favor the incumbents,” some of whom may be large. 

 Scale has its pros and cons, which we do our best to show. The ambiguity is why our 
 Recommendation 7  is more along the lines of suggesting  thoughtful focus than proposing a 
 simple answer. 

 17.1.1 Pros to Scale 

 Many large companies based on data science provide innovative and often free services to 
 consumers worldwide. By many measures, they have benefited the broader economy by 
 eliminating market rigidities, increasing consumer choice, and creating competitive 
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 marketplaces for new products. Data science and technology have also enabled increased 
 global trade, which most economists believe has benefited many by allowing each economy to 
 do what it does best. 

 Large companies' scale has enabled them to do the sophisticated engineering to build mature 
 and scalable applications. Windows 10 reportedly had at least 50 million lines of code. A crude 
 analysis of Google engineering employment data would indicate that Google has devoted 
 upwards of 100,000 engineer years to bring web search to its current state. Some data science 
 applications require a scale similar to well-known efforts like landing a human on the moon or 
 engineering a new commercial jet. In some instances, the business models enabled by data 
 science also necessitated the scale-out of traditional operations such as warehousing and 
 logistics. 

 The long-term investment needed to achieve certain advances also benefits from scale. 
 Co-author Alfred helped create the first large scale file sharing systems (like Google Drive, or 
 Microsoft OneDrive) that would scale around the world. The team’s basic work was done in the 
 1980’s, but the technology only came to broad realization about 30 years later through vast 
 amounts of engineering work. Even smaller firms, such as Box and Dropbox, have deployed 
 hundreds of engineers on their systems. Yet these file systems are but one small contribution to 
 data science's growth. 

 Sometimes, scale is needed to enter and disrupt existing markets. Amazon challenged Google 
 and Facebook and became the third largest online advertiser, and Google is challenging US 
 cloud leaders Amazon and Microsoft in their space.  393 

 Furthermore, large technology companies have contributed to many scientific and engineering 
 advances. While credit for the advances that make this book topical goes to both academia  F 28

 and industry (with a multitude of philanthropic, government, and industrial funding sources), the 
 technology sector made very strong contributions. 

 Economic measures show the research and development impact of the big technology 
 companies. According to Wikipedia, as of 2018, seven of the top ten companies in R&D 
 spending were technology companies: Amazon, Samsung, Alphabet, Microsoft, Huawei, Intel, 
 and Apple. 

 While by no means an apples-to-apples comparison, those firms' R&D budgets are 100 times 
 larger than the circa 2020 US National Science Foundation's budget for computer science and 
 electrical engineering. Even if development (not research) expenses were subtracted, the 
 corporate research budgets are still considerably larger in aggregate. Finally, most of these 
 companies contribute broadly to the general technology ecosystem through open source, 
 university funding, etc. 

 28  The 2009 Computing Research that Changed the World symposium highlighted many critical research 
 advances from academe that contributed to the success of the technology industry.  394 
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 As a result of these benefits, US policy views have been somewhat unclear. While there is 
 concern about corporate size, there is pressure to not distribute profits, but instead invest them 
 to produce more economic activity, more jobs, and, yes, further growth.  395 

 17.1.2 Cons to Scale 

 From a company's perspective, increasing scale is a two-edged sword. Balancing the previous 
 section’s benefits, scale may also lead to more regulatory scrutiny (e.g., concern over control of 
 highly used information channels) or reduced freedom of action (e.g., greater restrictions on 
 acquisitions). 

 Scale may also challenge a company’s ability to maintain its strategic focus and workforce 
 commitment. Employees of larger firms often grumble about the bureaucracy keeping them from 
 getting things done, taking risks, and being innovative. When he was CEO of IBM, Lou Gerstner 
 said, “Every little company wants to be big, and every big company wants to be little.”  F 29

 From society's perspective, scale has many potential problems, in particular, if scale leads to 
 market concentration. Companies with reduced competition may have increased pricing power 
 and a lessened pressure to innovate.  F  Fewer firms  also means fewer consumer choices. 30

 In related realms of societal governance, large companies may have increased power due to 
 their large value, workforce size, and economic importance. Many are concerned with their 
 power, for example this has triggered debates about social network recommendation policies. 
 There may be even increased societal risk or inconvenience if a large company’s essential 
 services fail. Many large cloud vendors and consumer facing sites have had outages, which 
 while rare, affect many all at once. 

 Thus, some argue that even if today’s negative consequences are minimal, we need to consider 
 regulatory regimes to mitigate data science's scale-oriented downsides – if only to be prepared 
 for the worst. 

 17.1.3 Perspective 

 While many of the previous points argue that scale may give too much advantage to firms, there 
 are certainly counter-examples. Historically, the tech sector has many examples of small 
 companies defeating mighty incumbents. Netflix completely displaced Blockbuster. Microsoft 
 overcame IBM in operating systems. Small companies Zoom and TikTok rapidly gained share in 
 video-conferencing and video distribution due to innovative services and user experiences. Over 

 30  Nobel Laureate, Sir John Hicks, commented, “the best of all monopoly profits is a quiet life.”  396 

 29  Gerstner made this statement to a group of his top executives in the late 1990’s responding to criticism 
 that the company wasn’t moving fast enough. 
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 the longer term, all the initial US computer manufacturers now have greatly diminished, if any, 
 remaining market presence. 

 Galbraith in his 1967 book, “The New Industrial State,” wrote about a diversity of forces that 
 moderate harmful impacts of large firms.  397  However, Galbraith, who died in 2006, could not 
 know about data science’s virtuous cycle. Nor that in mid-2021, the top five US firms by market 
 capitalization would be built on data science and related technologies. 

 Without question, it will take a multidisciplinary team of economists, policy experts, business 
 experts and technologists to fully understand the scale-related effects that data science has 
 unleashed. 

 17.2 Other Guiding Forces 

 While traditional forms or governmental regulation are effective in many domains, there are 
 some where it is challenged: 

 ●  As observed in  Section 14.1.1  , regulating a data science  application in one jurisdiction 
 might just result in it being hosted elsewhere. Consequently, if a political entity truly 
 wants to ban certain applications, it may need to make their use illegal and/or be willing 
 to block internet traffic to where they are hosted. 

 Relatedly, we note the European Union’s Court of Justice ruled that the EU cannot 
 require other countries to enforce its Right to be Forgotten law. Under it, individuals have 
 the right to have certain personal results removed from web search. Thus, European 
 nationals could circumvent it by connecting to search engines through unaffected areas. 
 International regulation or treaty might seem an answer to some above-country issues, 
 but it would be very difficult to reach wide agreement on mechanisms for discussion, 
 objectives, or approaches to enforcement. 

 ●  Political institutions may have neither the trust to regulate certain activities (e.g., due to 
 the potential for abuse of power, political vicissitudes, and insufficient technical 
 expertise) nor the legal authority (perhaps due to constitutional restrictions such as the 
 US First Amendment). These concerns particularly center on issues such as control of 
 content; regulating search results, fake news, hate speech, or distribution of material on 
 social networks. 

 An obvious alternative is self-regulation by firms, which can have many positive benefits for 
 those with proper incentives and operational mechanisms. 

 ●  One downside is that companies may also be insufficiently trusted. While their actions 
 may be guided by a long-term, ethical point of view, many may feel their concerns are 
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 primarily for managers, employees, and shareholders. Furthermore, some are also 
 concerned on how companies might behave if their business performance is challenged. 

 ●  Another risk is that self-regulation by some firms may lead others to attempt to capitalize 
 on their forbearance. For example, if some firms moderate content to temper the impact 
 of false information, these very actions could provide an impetus for creating new 
 platforms catering to extreme positions. In the social network realm, this could lead to 
 greater challenges. 

 Finally, one could imagine a role for existing non-governmental institutions. However, 
 universities, by themselves, cannot solve these types of issues and other, existing, nonprofits 
 with the needed expertise are not really focused on the right missions. Thus, we surmise that 
 new trusted institutions may be needed. 

 Recommendation 8. Create Independent, Consensus-building Institutions for Difficult 
 Problems 

 There are many consensus-building institutions throughout the world; Wikipedia lists about 100 
 standards organizations, some of which are about 150 years old. For example, Underwriters 
 Laboratories sets safety standards and then tests products to certify they meet those standards. 
 It is in the mutual interest of consumers to have safe products, manufacturers to have 
 consumers know their products meet safety standards, and insurance companies to minimize 
 payout risk. While it might seem these groups might have difficulty reaching agreements, there 
 is a sweet-spot of commonality motivated by safety and economic efficiency. 

 Many bodies manage to bridge competing interests to create definitive policies and standards in 
 medicine, all forms of engineering, accounting, and other areas. The internet and World Wide 
 Web would not function without largely volunteer organizations like the IETF and the W3C. 
 While the governance of internet domain names and IP addresses has had a tortuous history, its 
 current organizational structures seem to be working. In data-related realms, as just two of a 
 vast number of examples, the WHO has created the ICD-11 International Classification of 
 Diseases, and  Schema.org  has created the standard  for labeling web page content on web 
 pages. 

 Outside of traditional standards bodies, open source initiatives have marshaled the talents of 
 many competing organizations to produce valuable consensus bodies of work.  Because users 
 trust it as a reliable source of information, Wikipedia has become one of the top ten most visited 
 sites on the web.  In software, the Linux Foundation  convenes and coordinates the work of 
 technology professionals around the world to produce some of the most critical software 
 underlying modern computer systems. 
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 The Partnership in AI was founded in 2016 by seven technology companies, in part to share 
 best practices and to build consensus on ethical principles of AI usage. It has grown to over 100 
 organizations worldwide. 

 The financial sector contributes ideas on structure, particularly on partnerships between industry 
 and government. As two examples, FASB  398  does financial  accounting regulation, FINRA  399  is 
 responsible for broker-dealer regulation. 

 This book hypothesizes that a fairly wide variety of consensus-building institutions could provide 
 a diverse set of standard definitions, policies, and content. They could make products and 
 services more comprehensible and provide transparency that might make them better. They 
 may help create societal expectations and norms that seem lacking today. Here is a partial set 
 of ideas: 

 ●  As we argued in  Recommendation 3  , we believe that  certain terminology would benefit 
 from commonly used, clear and commonly used definitions. This is a natural activity for a 
 consensus-building institution. Perhaps there could also be a small set of clear, 
 well-defined privacy and ownership standards making it easier for firms to introduce 
 products and for consumers to use them. This is in contrast to the ubiquitous lengthy 
 and rarely read terms-of-use statements, and similar to creative commons licenses. As 
 an example, the notion of “Privacy Seals,” were explored and once used to assert that a 
 website abided by privacy standards.  400  Perhaps renewed  focus could make them a 
 success. 

 ●  Recommendation system policy standards could include standard, transparent 
 disclosures on objectives and goals, results dispersion measures, other fairness 
 guarantees, policies relating to fact-checking, and more. Consumers might prefer using 
 systems that adhere to recognized standards. 

 ●  Data publication norms, for journalists and others who promulgate data, could include 
 tenets to encourage data to be placed into perspective: 

 ○  Labeling on sample sizes and positive-outcome biases 
 ○  Clear terminology to label association studies 
 ○  Error bars on data (as in scientific publications) 
 ○  Including denominators representing population size so readers can place 

 specific data in perspective. 
 If such norms became widely applied, they would reduce the dangers of mis- and 
 imbalanced information described in  Chapter 11  . Principles  for journalism are by no 
 means a new idea, as evidenced by AP’s ethics statement,  401  but they could be 
 augmented to address data science challenges and more widely promoted. 

 ●  Science communication standards, that would temper research organizations and 
 scientists' enthusiasm on overly-definitive or optimistic results. Also to use terminology 
 that could be better calibrated by the press and public. These could create a culture of 
 humility in science announcements, helping scientists to be guided by the Belmont 
 Principles. 
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 ●  There could even be standardized templates that could serve as a basis for 
 organizations to adopt and consider ethical guidelines. (See  Section 19.2  for more on 
 this.) 

 Once started, the list of topics would naturally grow based on the creativity of involved teams 
 and evolving societal needs. Some consensus-building institutions would be international, but 
 some would be tailored to the needs of particular nations and cultures. Some would have a 
 strong technology orientation; others would be more focused on a particular application domain. 

 Results from these bodies could impact the world in these ways: 

 1.  They could create societal consensus around reasonable practices. 
 2.  In some circumstances, governments could codify definitions and standards in law. 
 3.  Institutions that adopted these standards could advertise their doing so, gaining 

 reputational, ease-of-use, and other advantages. Institutions that declared their adoption 
 would need to take it very seriously, as consumer protection rules would legally obligate 
 them. 

 The latter point could be a powerful marketing benefit and might also provide a force for societal 
 agreement. While some institutions may still refuse to be party to new standards, presumably 
 they would have much less acceptance. 

 In a related thought, consensus-building institutions could develop standardized content in some 
 domains. While not feasible in all areas due to difficulty of attaining unassailable truths (e.g., 
 “arbiter of truth” argument), it is in some. For example, the American Association for the 
 Advancement of Science sponsors  https://SciLine.org/  ,  402  a site that (among other things) 
 produces scientific, consensus-driven materials for journalists. 

 In addition to standardization and consensus content organizations, there could be 
 organizations which monitor and grade sites on predefined metrics. They would build on and 
 extend the US NIST Mission, which is to advance “measurement science, standards, and 
 technology in ways that enhance economic security and improve our quality of life.” 

 Fact-checking is a challenge because of biases that can easily influence the fact checker 
 policies and even which facts are checked. But, there are clearly objective measurements that 
 would serve to influence compliance with standards and to temper poor behavior. Proper 
 measurement could be used to provide “official” seals of approval for organizations in 
 compliance with certain standards, thus providing added benefits to the organization and 
 consumer alike. The Poynter Institute, for example, has defined the International Fact-Checking 
 Network code of principles to promote excellence in fact-checking, and also provides a 
 verification process for fact checkers.  403 
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 Chapter 18. Research and Development 

 We make two R&D recommendations to address  Chapter  15  ’s concerns. 

 Recommendation 9. Increase Focused and Transdisciplinary Research 

 During data science's rapid growth period, it has seen enormous progress as a field. Part of this 
 was due to research breakthroughs in many fields. Advances in computer vision, speech 
 recognition, natural language processing and robotics graduated from the laboratory to become 
 important industries. The research community responded to bias concerns in computer vision 
 systems by developing tools to identify bias and fairness issues, such as IBM’s AI Fairness 360 
 toolkit and Google’s What-If Tool. There are countless more examples. 

 Table 18.1  and  Table 18.2  illustrate opportunities  in technical and non-technical areas that 
 combine data science with other disciplines. Co-author Jeannette gives another descriptive 
 formulation of many of these and divides them into 10 categories.  96 

 Table 18.1 Suggested Research in Core Areas 

 Domain  Suggested Research Areas 

 Statistics, operations research, 
 machine learning 

 Causality, reduced training time, resistance to adversarial attack, 
 explanation, returning distributions, optimization in game theoretic 
 environments, reducing trial-and-error characteristics of machine 
 learning, inferring from noisy or heterogenous data from possibly 
 many sources, experimental replicability, scale issues. 

 Computing  Computer security, reliability, privacy, resilience, data streaming and 
 processing at scale, scalable computer architectures for performance 
 and reduced power consumption, advancing visualization in 
 traditional and virtual reality environments, uncovering fake 
 information, data provenance, quantum and optical computing, 
 probabilistic programming and formal methods software engineering 
 to ensure quality. 

 Table  18.1  lists  fertile  areas  of  research  at  data  science's  core.  We  tried  to  make  the 
 topics  in  this  chart  sufficiently  detailed  to  be  meaningful,  but  this  detail  makes  it  hard  to 
 also be complete. 

 As many challenges exist in data science's core subfields, there are even more in the broader 
 universe outside its core: 
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 Table 18.2 Select Transdisciplinary Research Areas 

 Domain  Suggested Research Areas - Data Science Opportunities 

 Education  Efficient and inclusive education 

 Science  Astronomy, biology, climate, materials discovery, neuroscience 

 Humanities  Literature, history, language, archaeology, art 

 Philosophy, ethics, and law  Considerations of privacy, manipulation, fairness, data ownership, 
 liability, the role of the nation state in a world of global data 

 Economics and finance  Economic prediction, regulatory issues, mitigating economic 
 inequality, dealing with noisy data 

 Political science  Prediction, explanation, and analysis of political phenomena, 
 regulation, politics and governance 

 Journalism  Tools to enable better journalism, better news aggregation 

 Medicine  Improved application to epidemiology, reduced friction in applications 
 of data science, enhanced diagnosis, phase IV drug monitoring, 
 precision medicine, drug design 

 Table  18.1  lists  some  fertile  areas  of  research  which  combine  data  science  and  other 
 disciplines.  We  acknowledge  we  have  listed  only  a  subset  of  the  areas  where  data 
 science is applicable. 

 Universities will play an important role in advancing data science, particularly exploratory and 
 transdisciplinary research. Fortunately, they are seizing the opportunity, as evidenced by the 
 worldwide explosion of data science initiatives, institutes, centers, and schools. In 2012, only a 
 handful of universities had data science entities; nine years later, there were over 100 
 worldwide. 

 Reports on data science's effect on universities discuss the challenges universities face in 
 embracing data science.  404,405  However, there is no  question they have realized data science 
 has been valuable for most departments, facilitating their efficient operation and increasing their 
 research productivity. Many further realize that data science is not just a tool but rather a 
 catalyst adding to many fields' research agendas. Technology and data science make some 
 older research topics and problems tractable, while providing new, previously unencountered 
 problems. 
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 Recommendation 10. Foster Innovation 

 Throughout history, further innovation has been a powerful resolver of problems, even those 
 problems caused by previous technological generations. For example, personal computers, 
 microprocessors, cell phones, and modern cloud computing solved more of the concentration 
 issues in 1960’s/1970’s mainframe and 1990’s personal computing markets than did regulation. 
 In automobile safety, vehicle technology advances have reduced fatality rates per mile driven to 
 less than 1% of early 1920’s rates. In the future, even if Level 5 self-driving cars are not on the 
 near-term horizon, their spin-off technologies will increase automobile safety. 

 How will new innovations let us benefit from data science with fewer of the disadvantages? We 
 can't know for sure, but we see many opportunities: 

 1.)  Just as music services resolved much of the music copyright infringement problem by 
 providing low-cost, low-friction, easily-used services worthy of people’s roughly $10 
 monthly fees, new services and business models in other domains might prove worthy of 
 subscription revenue. This would reduce some of the negative incentives related to the 
 solicitation of click revenue.  Benefit: Moving objective  setting to the individual. 

 2.)  Alternative business models where users purchase clear and vetted policies that govern 
 their search, social network, or streaming application results, which then provide 
 recommendations meeting their long-term objectives. Relatedly, recommendation 
 systems could become user agents, instead of agents of the organization that has users 
 as their customers.  Benefit: Moving objective setting  to the individual. 

 3.)  Innovations in the power of personal devices and machine learning may continue to 
 reduce the need for data aggregation on central sites.  Benefit: reducing security and 
 privacy risks. 

 4.)  As machine learning continues to become more capable, automated systems can better 
 resist bad actors and provide truly better information to individuals and society. On the 
 other hand, this is partially balanced by the use of increasingly powerful adversarial 
 techniques to generate fake data.  Benefit: reducing  mis-information. 

 5.)  New scientific publication mechanisms could have faster peer review, quicker 
 publication, and add continued revision to scientific papers, reducing the need for 
 endless republication.  Benefit: more accurate, up-to-date  information for both scientists 
 and journalists. 

 6.)  Systems with more knowledge of cognitive psychology could assist people in focusing 
 on their most important problems.  Benefit: reduced  manipulation and improved focus on 
 humanness. 

 7.)  New uses of technology in education could increase student attainment and reduce 
 costs in ways that better keep students' attention.  Benefit: Education solves many 
 problems. 
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 8.)  Ongoing efforts to apply data science to medicine, education, government, 
 transportation, and more could alleviate many ills and provide broad improvements to 
 societal infrastructure and inclusivity.  Benefit:  Manifold. 

 Innovation cannot solve all data science challenges. However, looking back, we could not have 
 guessed how combined creativity and immense effort would make data science applications so 
 central to the world. We believe that great data science and technology will continue to combine 
 in unanticipated ways, rectifying many of society’s concerns, particularly with the continuing 
 trillion-fold plus effects of Moore’s law as a tailwind. 
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 Chapter 19 Quality and Ethical Governance 

 19.1 Quality and Care 

 A central theme of this book is that data science must be applied with quality and care, because 
 it can do more harm than good when poorly executed. The world has moved beyond needing 
 toy, incomplete, or risky applications. This is in contrast to the field's earliest days when 
 practitioners were sometimes satisfied just to build proof points for approaches holding novelty 
 and promise. Broadly, those applying data science must consider the plethora of  Part III  ’s 
 challenges, choose good techniques, and then implement them with care. 

 This need to exercise great care is the main reason we crafted the Analysis Rubric. We briefly 
 summarize its elements as these seven questions data scientists should ask and answer: 

 ●  Is there  Tractable Data  ? 
 ●  Does a valid  Technical Approach  exist? 
 ●  Can the  Dependability  properties of Privacy, Security,  Resilience, and Abuse 

 Resistance be met? 
 ●  To provide  Understandability  , will the result be sufficiently  explainable, will it shed 

 sufficient light on the causal chain underlying its conclusions, and/or will it be 
 reproducible by others? 

 ●  Are there  Clear Objectives  specifying what we want  to achieve, taking unintended 
 consequences and stakeholders into account? 

 ●  Given their likely occurrence, will there be the necessary  Toleration of Failures. 
 ●  Is the application of data science appropriate given its  Ethical, Legal, and Societal 

 implications? 
 If any of these questions does not have a good answer, data scientists should take caution. We 
 hope this discussion motivates our eleventh recommendation. 

 Recommendation 11. Apply the Analysis Rubric to Improve Data Science Results 

 We hope it is now self-explanatory why we feel the holistic consideration of all Analysis Rubric 
 items is needed to have data science applications of sufficient quality.  Quality only emerges 
 when the myriad challenges are considered and met. 

 19.2 Ethics, Expertise, and Organizations 

 The variety of data science application areas and their increasing impact point to a future in 
 which data scientists will have greater responsibility. With that, they must also consider the 
 ethical consequences of their actions. However, these considerations will change greatly from 
 field to field and from era to era. 
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 Thus, beyond the relatively clear items in the traditional professional codes of ethics to which we 
 referred in  Chapter 3  , we cannot reduce ethics to  a precise list of detailed rules. Instead, we 
 have advocated for a principlist approach, building on a tested applied ethical tradition. This, in 
 turn, requires deliberation and, when data science takes place within organizations, discussion 
 among colleagues with a shared vocabulary and values. 

 Despite the difficulty of addressing the many application-specific ethical concerns, we can still 
 make three important recommendations. 

 Recommendation 12. Scrutinize Results and Be Truthful 

 Data scientists use highly technical means to arrive at important conclusions. Also, they often 
 advocate for a particular worldview with their research and development. Their results may 
 receive little critical skepticism for two reasons: 

 ●  Perception that results are more certain than they actually are, perhaps due to 
 seemingly high numerical precision. 

 ●  Insufficient understanding that data scientists may be making subjective design choices 
 in their data analysis and algorithm development. 

 Therefore data scientists have an ethical obligation to carefully apply the tools of their trade and 
 engage in self-critical inquiry before communicating or publishing results. 

 In particular, data scientists are best equipped to understand the complexities and potential 
 consequences of their applications and research. For that reason, they are also best suited to 
 provide critical reviews before deployment and publication of results. In short, as with other 
 experts in medicine, engineering, or science, data scientists benefit from others' trust, and must 
 conduct themselves in ways that merit, rather than exploit, that trust – with honesty in their craft 
 and humility as to their claims. 

 Recommendation 13. Use Data Science to Explain Alternatives 

 Data scientists have unique insight into their research. They should avail themselves of their 
 expertise to not just state technical results and performance, but also to communicate their 
 work's consequences and potential risks. They cannot assume others will easily understand 
 these implications. Just as health practitioners provide alternative choices and communicate the 
 risks of a recommended treatment, so should data scientists communicate alternative 
 approaches and the risks associated with their recommendations. 
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 While our principlist approach to ethics is a start for ensuring ethical policies, achieving them 
 also requires the right organizational structure. Without question, it is difficult to overlay ethical 
 considerations onto already complex individual and institutional motivations. So for this aspect 
 of ethical governance, we suggest a focus on the structures and processes in which principled 
 decision-making occurs. 

 Recommendation 14. Create Organizational Approaches for Principled Decision Making 

 Section 14.3  discussed the limitations of different  organizational structures and their impact on 
 policy, both in universities and in corporations. Appropriate organizations include: 

 ●  Leadership which values ethics, communicates this as a value, and is accountable when 
 these values are challenged or undermined. 

 ●  A community in which individuals understand and commit to these shared values and 
 principles. 

 ●  An organizational structure which surfaces and resolves deliberative disputes when 
 ethical consensus cannot be reached among individuals and teams. Due attention must 
 be paid to ensuring its appropriate evolution as an organization and its challenges 
 evolve. 

 Ethical principles define the framework, but organizational design provides the mechanism for 
 applying it. 
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 Recap of Part IV – Addressing Concerns 

 This part began by describing some of society’s concerns about data science, most of which are 
 motivated by challenges we laid out in  Part III  . We  recognize there are probably more concerns 
 than we have included, so we hope we have stimulated readers to consider additional topics. 
 We then proposed some resolutions, as we felt obliged to not just illustrate problems but attempt 
 to propose paths towards solutions. As with our list of concerns, we know our list of 
 recommendations is likely incomplete. 

 We admit that we authors have differing degrees of certainty on some and/or the importance or 
 practicality of others. While we are united on promoting data science education, we have 
 nuanced views on the balance between the over-regulation of data science applications vs the 
 importance of protecting the public against risk. Just as many of the  Part III  chapters could be 
 books unto themselves, there are policy tomes on almost all of the subjects.  Appendix 1  puts 
 our recommendations in one place, while  Table IV.1  shows which recommendations connect to 
 which societal concerns. 
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 Table IV.1 Top-Level Concerns and Recommendations to Address 

 #  Recommendation 

 Societal Concerns 

 Economic & 
 fairness 
 impacts: 
 People & 
 institutions 

 Personal 
 data 

 Institutional 
 and societal 
 operation and 
 governance 

 Environ- 
 ment  Trust 

 1 
 Broaden educational 
 opportunities in data science  Y  Y  Y  Y 

 2 
 Use data science & technology 
 in teaching data science  Y  Y  Y  Y 

 3  Promote clear vocabulary  Y  Y  Y 

 4 
 Regulate uses, not technology 

 Y  Y  Y  Y 

 5 
 Regulate clear, not potential, 
 problems  Y  Y  Y  Y 

 6 
 Update laws with data science 
 and technology in mind  Y  Y  Y  Y 

 7 

 Consider the impacts of 
 economies of scale and the 
 virtuous cycle  Y  Y 

 8 

 Create independent, consensus 
 building institutions for difficult 
 problems  Y  Y  Y  Y 

 9 
 Increase focused and 
 transdisciplinary research  Y  Y  Y  Y 

 10  Foster innovation  Y  Y  Y  Y 

 11 
 Apply the analysis rubric to 
 improve data science results  Y  Y  Y 

 12  Scrutinize results and be truthful  Y  Y 

 13 
 Use data science to explain 
 alternatives  Y  Y 

 14 

 Create organizational 
 approaches 
 for principled decision-making  Y 

 The columns represent the categories of concerns listed in  Chapter 15  . The rows 
 represent recommendations, as summarized in  Appendix  1  . A “Y” means the 
 recommendation at least partially addresses the concern. 
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 Chapter 20. Concluding Thoughts 

 We had several goals in writing  Data Science in Context  : 

 ●  We wanted to introduce data science as a  coherent  field  , while illustrating the need to 
 balance  its opportunities and challenges  . 

 ●  We wanted to advise our readers on how to both  apply  data science  and to  critically 
 understand  its uses in the world. 

 ●  We wanted to emphasize ethical considerations, through both the  ethics framework  and 
 a large collection of ethics-related challenges. 

 ●  We wanted to summarize  societal concerns  about data  science and make 
 recommendations to address them. 

 This chapter briefly summarizes these points and concludes with a few lessons we learned 
 while writing this book. 

 Data Science - A Coherent Field 

 Our explanation of this field began with a definition: “Data science is the study of extracting 
 value from data – value in the form of  insights  or  conclusions  .” We then made more explicit 
 what we mean by insights and specified six types of conclusions:  Prediction  , 
 Recommendation  ,  Clustering  ,  Classification  ,  Transformation  ,  and  Optimization  . 

 As we described, data science's intellectual origins lie mostly in statistics, operations research, 
 and computing. We find the story of the forces that combined to form data science over the 
 decades prior to the term’s ~2010 breakout to be a compelling one, replete with visionaries, 
 breakthroughs, the march of technology, and economic incentives. We illustrated data science’s 
 broad and growing impact, complex challenges, and powerful future with many examples. We 
 used the term “transdisciplinary” to emphasize its integration of many forms of knowledge, 
 techniques, and modes of thought. 

 The  Analysis Rubric  and associated discussions of  challenges completed this theme by 
 showing data science’s breadth of problems and methods for addressing them. 

 Data Science - Opportunities and Challenges 

 One of our main aims has been to accurately and comprehensively cover both data science's 
 positive benefits and its potential harms when misused. 

 ●  The domains where data science is proving applicable are already important and are 
 growing rapidly. They affect almost everyone's day-to-day life. As co-author Jeannette 
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 says, “Data science provides the 21st century methods to tackle 21st century problems,” 
 meaning climate, public health, education, and more. 

 ●  Applying data science well is difficult. We discussed many challenges in  Part III  relating 
 to data, modeling, dependability, supporting understandability, setting objectives, 
 tolerating failures, and meeting ELSI objectives. They are mathematical, engineering, 
 epistemological, societal, and political in nature. Because of them, society has 
 developed concerns over data science’s actual and perceived harms, as we summarized 
 in  Chapter 15  . 

 Understanding and Applying the Analysis Rubric 

 We have aimed to instruct students and practitioners on how to approach new data science 
 problems by offering the Analysis Rubric with its seven elements and implied questions: 

 ●  Is there  data  ? 
 ●  If the goal is to provide a conclusion, is there a  model  that will do so? 
 ●  Will the project be  dependable  ? 
 ●  Can the project provide sufficient  understandability  ? 
 ●  Are there clear and beneficial  objectives  ? 
 ●  Can the application  tolerate failures? 
 ●  Are the needed  ethical, legal, and societal  implications  met? 

 A priori, the rubric helps determine if a proposed project is feasible. A posteriori, it can be used 
 to see if it addressed needed issues. We do not advocate a particular top-down or bottom-up 
 methodology, and we recognize that different project teams will use the rubric in different ways. 
 We feel that the benefits of a rubric or checklist are well-documented,  406  and that our rubric is a 
 good starting point for most teams. 

 This book presents many examples of applying the rubric. Some showed data science works 
 naturally; others showed great challenges. The examples informed us not only as practitioners, 
 but as people who interact with uses of data science on a daily basis. We acknowledge that 
 some of our examples will become stale and that future readers will be surprised we omitted 
 others of then-current contemporary importance. 

 As previously noted, we readily admit that aspiring data science practitioners need to augment 
 our discussions with technical material from statistical, optimization, and computational texts. 

 Ethics 

 We believe a data science project is only a complete success when it satisfies an actual human 
 need and not merely meets a statistical measure. To that end, a successful data scientist 
 considers not only design constraints and statistical goals but also the context that defines 
 success. Framed this way, and with a nod to our title,  Data Science in Context  , a data science 
 project's success clearly depends on the human and societal context in which it exists. 
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 By no means do we argue that it’s easy to balance ethical and other objectives, but we do argue 
 that the act of trying to do so results in better outcomes. Ethical consideration is not just for 
 philosophers, it is a necessary and useful exercise that is the responsibility of all data science 
 practitioners. 

 We recommend the Belmont Principles of  Respect for  Persons  ,  Beneficence  , and  Justice 
 (  Chapter 3  ) as a concrete framework for thinking about  ethics in data science. We also 
 emphasized that ethical uses of technology necessitate scientists and engineers to successfully 
 navigate all of  Part III  ’s challenges. We then discussed  the organizational and governance 
 challenges that make it hard to balance incentives and achieve good outcomes.  Chapter 19 
 concluded the ethics discussion with recommendations on quality and organization. 

 Addressing Concerns 

 In  Part IV  , we divided societal concerns on data science  into five categories. Summarized in 
 Table 15.1  , they are the  Data Science Implications  on Economic and Fairness  ,  Impacts on 
 People and Institutions  ,  Personal Implications to  Data  ,  Institutional and Societal Operation  ,  the 
 Environment  , and  Trust  . We then proposed some recommendations  of varying specificity and 
 complexity: 

 ●  Some are straightforward and relatively short-term. For example, some of our 
 recommended technology improvements can occur quickly. As one example, we are 
 seeing rapidly increased uses of federated learning to reduce privacy risks. Also, we 
 could quickly define and use more precise vocabulary (e.g., for specific privacy 
 concerns) and thus have clearer and more thoughtful policy debates. 

 ●  Some are clear to us but take time. A focus on education is of the utmost importance, as 
 individuals with data science knowledge will gain leverage in their vocation and better 
 understand their rapidly changing world. More practitioners will also speed progress. We 
 want to emphasize that humanities and social science education provides data scientists 
 with valuable perspectives. 

 ●  Others are complex. Regulation requires care due to negative, unintended 
 consequences. Issues such as content moderation or the implications of scale are 
 complex and require significant thought and consensus-building. 

 Reflections from Your Authors 

 We have each written a brief essay, representing our own individual interests and concerns. 

 Jeannette M. Wing: Where Does Data Science Fit in Academia? 

 “Will data science evolve as an academic field like computer science or like computational 
 science?” This insightful and probing question asked by Ed Lazowska, renowned computer 
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 scientist at the University of Washington, at the inaugural Academic Data Science Leadership 
 Summit in 2018, still has no answer–it is too early to tell. And maybe it doesn’t matter. 

 Computer science as a field of study emerged from its roots of electrical engineering, 
 mathematics, and business in the 1960s. Within two decades, one could major in computer 
 science, get a Ph.D. in computer science, be a faculty member in a computer science 
 department, be a dean of a computer science school, publish in computer science journals and 
 conference proceedings, buy computer science textbooks, attend computer science 
 conferences, get a job as a computer scientist, join computer science professional 
 organizations, and win the equivalent of the Nobel Prize in computing (i.e., the Turing Award). 

 Funding agencies, such as the National Science Foundation and the Defense Research 
 Projects Agency, had created directorates or offices dedicated to computer science. The 
 information technology sector grew quickly on the shoulders of computer science giants. To 
 date, industry demand for computer scientists continues to outstrip the supply. It took only a 
 couple of decades, but computer science is now an established and accepted field of study 
 worldwide. No question. 

 Computational science, in contrast, refers to the use of computational methods, tools, and 
 thinking in the sciences. For the most part, it is not considered a single field of study. Rather, 
 one can specialize or even major in computational astrophysics, computational biology, 
 computational chemistry, computational materials science, computational neuroscience, 
 computational physics, and more. But most universities do not have a computational science 
 degree program or a computational science department. 

 Data science, like computer science, has its roots in other disciplines. Data science, also like 
 computer science, has nearly universal applicability. So, will the foundations of data science 
 solidify and evolve, much like they did for computer science, and lead to data science being its 
 own discipline? Or will data science be so integral to each domain, where eventually each 
 domain’s repertoire of methods necessarily includes data science? 

 Here are two other suggestive analogies: On one hand, mathematics is the language of 
 science, yet it remains an independent field of study. On the other hand, software engineering is 
 typically studied as part of computer science, yet one of the first jobs a computer scientist might 
 land in industry is titled “software engineer.” 

 Universities today are embracing data science but in different ways. In some schools, it is a part 
 of the computer science department or college (e.g., University of Southern California and 
 University of Massachusetts, Amherst) or part of the statistics department (e.g., Carnegie 
 Mellon University and Yale University). In some, data science is its own school (e.g., University 
 of Virginia), alongside its computer science and statistics departments. At some schools, there 
 is an independent data science institute (e.g., Columbia University, Georgia Tech, Harvard 
 University, University of Chicago, University of Michigan, University of Washington), cutting 
 across schools, and thus across disciplines; however, degree programs and joint faculty have 
 homes in an academic department. And some schools have a hybrid approach: at MIT, the 
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 Institute for Data, Systems, and Society, serves the entire university, cutting across all schools 
 and disciplines, but organizationally, it is housed in the Schwarzman College of Computing; at 
 New York University, the Center for Data Science serves the entire university but offers its own 
 degree programs and hires joint faculty; and at UC Berkeley, the Division of Computing, Data 
 Science, and Society, is a new academic entity, incorporating its computer science faculty, who 
 are part of the School of Engineering, and Berkeley’s School of Information. 

 Watching these multiple models emerge is not surprising, as data science builds on core 
 strengths in computer science, statistics, and operations research. How a university embraces 
 data science is related to its organization of these and other related disciplines. Universities 
 understand the value of data science in the future of all academic pursuits, and thus to their own 
 future, but today there is no one right answer to the question when the president asks “Where 
 do I tuck data science in the org chart at my university?” 

 At the same time, interest in data science continues to skyrocket. The 2018 Academic Data 
 Science Leadership Summit led to the creation of the Academic Data Science Alliance, a 
 non-profit organization initially funded by the Gordon and Betty Moore Foundation, Alfred P. 
 Sloan Foundation, and the National Science Foundation. As of 2021 it had 40 founding member 
 institutions. It convenes annual meetings, already engaging over 100 organizations from 
 academia, industry, and government to share best practices in education, research, and the 
 ethics of data science. 

 And the next generation is voting with their feet. In late 2020, the NSF-funded Northeast Big 
 Data Innovation Hub, headquartered at Columbia University, started an effort in the nine 
 Northeastern states to engage directly with students interested in data science. This effort 
 blossomed into the National Data Science Student Data Corps, which by January 2022 had 
 1922 student members (including high school students) from 348 colleges and universities, 40 
 states, and seven countries. Twenty-four percent of the members are from Minority-Serving 
 Institutions. Students from over 40 academic institutions are asking to create their own NDSC 
 chapters. 

 Regardless of how data science fits into an academic organizational structure, data science is 
 here to stay. If your child asks you “Should I study data science?” reply “Yes!” because data 
 science students learn techniques useful for any future profession–and useful for life. 

 Chris Wiggins: Rethinking Responsibility and Success 

 In May of 2017, I asked the scholar danah boyd how we engineering educators could convince 
 students and practitioners that context was worth studying. Her suggestion was to push data 
 scientists to think more deeply about what it means for data science research and data science 
 products to be “successful”: a success does not simply mean meeting a statistical goal (for 
 example low generalization error) but rather that it actually improves lives. 
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 Much of this book has been about the promise of data science. Certainly, in the last decade, it 
 has become clear that computational advances for making sense of the world through data 
 have vastly increased its impact. Arguably, the mindset of data science goes back to work by 
 John Tukey, who split his career between industry and academia (Bell Labs and Princeton). A 
 slightly earlier point of origin is the dawn of digital computation at Bletchley Park, where 
 computing with data and the combined statistical and engineering mindset has been credited 
 with shortening World War Two by two to four years. However, as Spider Man's uncle once 
 warned him, “With great power comes great responsibility.” 

 For most of us raised as technologists, the idea that a technical subject can have “politics,” 
 meaning it can change the dynamics of power, is unfamiliar and sometimes unbelievable. Like 
 many earlier researchers in machine learning, my personal training was in physics, a field in 
 which the potential politics of one's work has been inescapable since August of 1945. One of 
 many significant differences from data science today is that the technical and financial barriers 
 are lower than ever before to having a wide impact on a large number of people. 

 Part of our goal in this book, implicit in the title  Data Science in Context, is to  illustrate how data 
 science as a technical field is built from and shares techniques with many adjacent fields of the 
 last 50 to 100 years. A second meaning to “data science in context” is to remind practitioners 
 that, particularly in industry, data science powers products – that is, things that real people use 
 and which impact their lives. A similar sentiment guides our treatment of ethics. We hope that 
 this book not only convinces you, our reader, that the context is worth thinking about, but also 
 that it gives you the conceptual tools for thinking through this context and the difficult 
 responsibilities data science practitioners now bear. 

 We hope that by introducing you not only to the fundamental technical concepts of data science, 
 but also to fundamental concepts such as the Belmont Principles, we will help you expand and 
 ground your conception of what constitutes a successful data science project and a successful 
 career in data science. 

 Peter Norvig: From Algorithms to Data to Needs 

 When I started work in artificial intelligence in 1980, researchers were focused on inventing new 
 algorithms to solve problems more effectively. By 1990 it became clear that the field of AI was 
 changing, in three ways: 

 ●  The canonical approach shifted from an expert system (a program designed to mimic the 
 thinking processes of human experts) to an intelligent assistant (designed not to imitate 
 humans, but rather to optimize performance on some task–to do the right thing). 

 ●  Researchers (notably Pearl  407  , along with Cheeseman  408  ,  Heckerman, Horvitz, and 
 others  409  ) convincingly argued that reasoning with  probabilities and decision theory was 

 Authors’ Manuscript: Data Science in Context: Foundations, Challenges, & Opportunities © 2022  Page  254 



 To be published by Cambridge University Press. Free to view & download for personal use. No redistribution or derivative works 

 superior to reasoning with logic for the types of problems AI faced–problems where 
 uncertainty is a key component. 

 ●  Machine Learning grew from a subfield to the dominant approach within AI, and the 
 emphasis of the field shifted from  algorithms  to  data  .  No longer were knowledge bases 
 carefully hand-crafted and curated by graduate students; instead we could appeal 
 directly to the data. Researchers such as Banko and Brill  410  showed learning curves that 
 continued to improve as the amount of data went from thousands to millions to billions of 
 unlabeled examples. There was plenty of room at the top for more data, and the phrase 
 “big data” came into vogue. 

 Stuart Russell and I were able to chronicle these changes in a textbook,  411  and we had good 
 luck in our timing; professors and students were eager to embrace this newly-evolving picture of 
 AI. Later, Alon Halevy, Fernando Pereira, and I were also able to put down some thoughts on 
 the effectiveness of data.  8 

 With the frontier of AI shifting from algorithms to data, I swapped my .edu address for .com to 
 get the resources–computing power and teammates–necessary to harness big data. It was an 
 exciting time and we created applications that were used by millions, and then billions, of 
 people. Before anyone codified AI Principles, I learned to embrace the principles of the World 
 Wide Web Consortium: “Put user needs first” and “The web should not cause harm to society.” 
 I’m proud of the dedication and hard work that my teammates put in towards achieving these 
 goals. 

 One day in 2012 I was sitting by myself, contemplating what project to focus on next, when 
 Geoff Hinton approached, very excited, and said “You’ve got to see this. It finally works!” He 
 showed me the image classification network that was to wi  n the ImageNet ILSVRC  competition. 
 I immediately realized that this would mark another significant change in the field, but I 
 underestimated just how widespread the influence of deep neural networks would become in 
 vision, speech recognition, natural language, robotics, and other fields. 

 By 2020, it looked like the field had changed again. This time it was a change in how we look at 
 problems. We still had to answer “what’s the right algorithm?” and “what data should we use?” 
 but most often the hardest question to answer was “what is the goal?” or “what do we want to 
 optimize?,” and the related questions of “what is fair?” and “who is this for?” 

 Underlying all this is the deeper question “what context are we operating under?” I spent a lot of 
 my time in college and grad school playing Ultimate Frisbee, and in 1982 I was called upon to 
 serve on the committee to write the 8th edition of the rules. My experience with rule-based 
 systems, both in AI and in sports, told me that when there is a specific set of rules, competitors 
 look for loopholes in the rules. For example, in basketball, sometimes a player will intentionally 
 foul an opponent, because doing so gives their team an advantage. To counter this, the rules 
 are constantly updated with new penalties (e.g., the “clear path” rule and the “Hack-a-Shaq” 
 rule). 
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 I realized that it would never be possible to foresee all situations and codify all penalties, so 
 instead the 8th edition rules state that “Ultimate has traditionally relied upon a spirit of 
 sportsmanship which places the responsibility for fair play on the player” and “Such actions as 
 taunting, dangerous aggression, intentional fouling, or other “win-at-all-costs” behavior are 
 contrary to the  spirit of the game  and must be avoided  by all players.” In effect, we told players 
 that their first responsibility was not merely to optimize their chance of winning the game under 
 a set of rules; their primary goal was to conscientiously contribute to the betterment of the 
 community of players, and only secondarily to win the game. 

 I saw these lessons as both a challenge and an opportunity for machine learning systems. The 
 challenge: any system that is described by a set of rules may have exploitable loopholes. The 
 opportunity: it is easier to describe the boundaries of acceptable behavior with a set of 
 examples than with rules, and machine learning systems are good at learning from examples. If 
 we model things correctly, we can build machine learning systems that learn to act like 
 conscientious members of a community, not like win-at-all-costs exploiters. We want to make it 
 easier to create systems that are creative enough to, for example, come up with “move 37” in 
 Go, yet are ethical enough to know that cheating is not the right way to win, and that turning the 
 whole world into one big paper clip factory is not the right thing. I believe that a major area of 
 research will be in finding better ways to communicate with machine learning systems, to have 
 more effective ways of describing to them the bounds of what we want them to do, and to help 
 us discover for ourselves what we really want. 

 To date, the computer industry does not have the best record of protecting the community from 
 win-at-all-cost exploiters. The web is a global marketplace, for products, ideas, and attention; 
 and we have made it all too easy to harvest user’s attention.  412 

 The 20th century British philosoph  ers Michael Philip  Jagger and Keith Richards wrote that “you 
 can’t always get what you want” but “you get what you need.” However, when it comes to the 
 web, they got it exactly backwards. We have constructed a very efficient feedback mechanism 
 to say what you  want  –a system that encourages you  to consume the latest amusing game, 
 meme, or video, and then uses collaborative filtering to make recommendations to others as 
 well. But we don’t have a good system for saying what we really  need  –equality, justice, health, 
 safety–and we don’t have good feedback systems to make sure everyone gets them. 

 The challenge for machine learning and data science is to build systems that align with society’s 
 real needs, and work for everyone. I hope this book will inspire researchers to  develop ideas 
 that contribute to this; will enable developers to build systems that work for the betterment of all; 
 and to empower consumers to know what they can ask for. 
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 Alfred Spector: Post-Modern Prometheus 

 I recently came upon an article arguing that data science had hit “Peak Metaphor.”  F  This is no 31

 surprise given the contemporary importance of the field, and the need for many of us to find an 
 apt turn of phrase to summarize some point of view. On my mind is this message: 

 Data Science: Powerful Technology. Great and Increasing Value. Handle with Care. 

 I realize this is hardly new. It’s been repeated countless times, perhaps beginning with the 
 Greek Myth of Prometheus, who delivered fire,  a technology  of unarguable value and lasting 
 impact. However, Prometheus suffered acutely for pilfering the gods’ trade secret, and we are 
 still  dealing  with fire’s disadvantages some twenty-eight  hundred years after the Greek poet 
 Hesiod’s writing.  So: 

 ●  Fire  : It’s easy to start, diversely useful, but it’s  risky and has harmful side effects. The 
 harms have been relatively evolutionary and despite repeated catastrophes, we’ve found 
 ways to deal with them. Concerns over CO  2  will curtail  bulk use, but otherwise fire will 
 remain. 

 ●  Data Science  : It’s ever easier to gather data and  create great insights or conclusions. 
 Like fire, it is astoundingly useful. It’s also a risky endeavor with subtle problems that 
 have harmful effects. It may even be with us for twenty-eight hundred years more. 

 The really big question we don’t answer in this book is whether data science (and the 
 overlapping field of artificial intelligence) will have a gradually  increasing impact or whether it  will 
 catalyze fundamentally extreme and discontinuous change. Addressing this topic from the 
 vantage point of AI, Bostrum wrote in 2014 that the time is near when we have 
 “superintelligence,” which he defines as “any intellect that greatly exceeds the cognitive 
 performance of humans in virtually all domains of interest.”  414  Kissinger et al. wrote in 2021 
 about AI causing “a new epoch” and an “alteration of human identity and the human experience 
 of reality at levels not experienced since the dawn of the modern age.”  36 

 Nearer term, pragmatists like me will be focused on what to learn and do now. While I strongly 
 endorse deep thinking about the longer-term issues, our work is mostly to solve the challenges 
 we perceive today. I see these as dividing into ones that are primarily technical and others that 
 relate to application or use: 

 Technical concerns  : Research already underway will  solve many of data science’s technical 
 challenges though some breakthroughs are needed: In particular, we  can’t yet replicate the type 
 of transfer learning that enables humans to quickly learn from books. We also don’t have a good 
 handle on how to combine common sense knowledge with machine-learned models. Modeling 

 31  Sondregger used this phrase, perhaps sarcastically, to note the recent spate of metaphors for data 
 science.  413 
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 applications with concept drift seems almost impossible, particularly if there is sudden change. I 
 also don’t see how we will solve the interpretability problems discussed in  Section 11.1  . Finally, 
 resilience in the face of adversarial attacks seems like it will be a long-term challenge. 

 Application concerns  : As we have said, when data science  is used incorrectly, there are 
 negative consequences. 

 ●  Data science exacerbates the problem of misaligned incentives. It is too easy to tune 
 systems to meet a narrow goal (optimizing an overly simplistic objective) that is not to 
 the long-term benefit of individuals, organizations, or society. The problems of incentives 
 may be greater if they are created by a government or a small number of large 
 organizations, potentially reducing a society’s pluralistic voices. 

 ●  Data science methods coupled with the sheer quantity of fine-grained data can lead to 
 compelling but false insights. In particular, our book warns against confusing correlation 
 and causation. Creators and consumers of information should practice the greatest care 
 in communicating and understanding data science results, and should pay particular 
 heed to the list of cognitive biases co-author Peter has assembled in  Section 11.4  . 

 ●  Data science makes it harder to agree on reasonable, but imperfect, solutions to difficult 
 problems. Even though it may be possible to quantify mathematical trade-offs between 
 different solutions, this analysis may only serve to highlight the inevitable limitations of 
 each and prevent pragmatic action. Many systems are zero sum games, and data 
 science can be used to highlight each loss. It’s hard to remember “The Great is the 
 Enemy of the Good,” when confronted with quantified objections. 

 ●  Data science solutions are often insufficiently tolerant of errors or abuse. Some errors 
 naturally occur because of the probabilistic nature of data science solutions or the innate 
 difficulty of solving certain types of problems. Security vulnerabilities also play a big role, 
 and they are extremely hard to prevent. Risks are heightened because many of us, 
 myself included, were late in realizing that nation-states would engage in attacks on 
 non-military applications. These challenges are not solely technical, because they often 
 arise because of interactions between people and computers. We thus need to think 
 carefully about where we are applying data science. 

 Many of these challenges will require the transdisciplinary efforts of the diverse coalitions we 
 referred to in  Chapter 2  . We surely need to apply  an ethical lens as we make important 
 decisions, and societal norms may also change. As with the control of fire, we will also require 
 sensible laws and regulations, though we must take care to avoid negative regulatory 
 consequences. Solutions will take time, and as with fire (and all good inventions), there will 
 inevitably be residual risks that we learn to live with. 

 In her 1818 novel  Frankenstein  , Mary Shelley explored  the consequences of a powerful and 
 groundbreaking technology – in this case, one that created a living creature. In recognition of 
 the parallel between Frankenstein’s delivery of a synthetic life and Prometheus’ delivery of fire, 
 she subtitled her book  The Modern Prometheus  . We data  scientists are perhaps, collectively, a 
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 “Post-Modern Prometheus,” who can and should strive to minimize the risks of our own fire, for 
 the well-being of ourselves and our societies. 

 However, we should receive encouragement to pursue our dreams from the words of Percy 
 Shelley, her husband, who also wrote about Prometheus. He concluded his play,  Prometheus 
 Unbound  , in an uplifting manner: 

 To defy Power, which seems omnipotent; 
 To love, and bear; to hope till Hope creates 
 From its own wreck the thing it contemplates; 
 Neither to change, nor falter, nor repent; 
 This, like thy glory, Titan, is to be 
 Good, great and joyous, beautiful and free; 
 This is alone Life, Joy, Empire, and Victory.  415 

 Final Thoughts 

 Data science practitioners have employed enormous effort and creativity to create applications 
 of great value. They have addressed many difficult challenges to deliver results embraced by 
 billions of people every day. Data science has brought increased understanding, economic 
 growth, and new tools and entertainment. 

 We believe that data science will continue to thrive and extend its reach in important areas such 
 as healthcare, education, climate, transportation and logistics, commerce, sports and games, 
 and economic development, to name but a few. We should proactively encourage and engage 
 in data science, while also addressing its pitfalls. The increasing international competition in 
 data science means nation states will very likely reach the same conclusion. 

 There are indeed very hard foundational questions underlying data science: How do we deal 
 with missing or differentially sampled data? What does it mean to be fair? How do we 
 distinguish correlation and causation? How do we explain conclusions? Some real-world 
 applications may continue to elude data science solutions, due to the sparsity of data, 
 complexity of the problem, or cleverness of adversaries. We reiterate that an application of data 
 science has not provided a complete solution if it does not meet the breadth of the Analysis 
 Rubric considerations. 

 Some problems are particularly hard to set proper objectives for, as discussed in  Chapter 12  . 
 Simple metrics, such as maximizing clicks or counting near term revenue, are unlikely to suffice 
 from either a business or ethical perspective. When data science is asked to provide solutions 
 where people have not agreed on the preferred outcomes, the solutions will not please 
 everyone. Gaining a consensus requires advice from ethicists, governments, economists, 
 political scientists, other experts, and the general public. 
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 Data science is being asked to provide solutions to very difficult problems. For example, it is 
 plainly difficult to optimize complex systems that exhibit non-stationarity and which have 
 adversarial responses, as we discussed in the country-wide economic prediction example of 
 Section 6.5  . In recognition of this and the difficulty  of establishing consensus objectives, these 
 problems have been called  wicked  , and are acknowledged  to be very difficult.  416 

 Finally, we admit the field's breadth and speed make it hard to keep up with everything. We 
 ourselves are confronted with the rapid changes in application areas, technical approaches, and 
 problems, though we find that this book’s frameworks allow us to put these changes in 
 perspective. We are less sure about all of the details, and we know we have probably made 
 errors or provided overly shallow discussions of some topics so that we could cover the full 
 scope of the challenges and opportunities we see. In recognition, we expect to put updates on 
 our book’s website,  DataScienceInContext.com  . We also  acknowledge that some of our 
 examples will become stale. 

 This book has not covered three topics that may have practical implications in the future: 
 ●  The application of quantum computing to solve currently intractable problems. 
 ●  The wide-spread deployment of capable robots throughout society. 
 ●  The development of artificial general intelligence, rather than AI for specific applications. 

 We close by stressing that data science is important to society – too important to be done 
 poorly. We thus hope this book stimulates more of us – data scientists and humanists, ethicists, 
 social scientists of all types, scientists, politicians, jurists, and more – to study data science's 
 opportunities and challenges and work together to better our world. 
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 Appendix 1 Summary of Recommendations from Part IV 
 Recommendation  Comment 

 1. Broaden educational opportunities in 
 data science 

 Broad education in data science, including at the boundaries of other 
 disciplines, provides increased opportunity to all and is important for 
 the field. 

 2. Use data science & technology in 
 teaching data science 

 Immersing students in data science tools will improve educational 
 outcomes and leverage skilled teachers. 

 3. Promote clear vocabulary  Our vocabulary for discussing data science challenges is often 
 imprecise, so discussions are meandering. Policies with standardized 
 definitions would benefit both service providers and consumers. 

 4. Regulate uses, not technology  Harms arise more from the application of technology in particular 
 circumstances, not the technology itself. 

 5. Regulate clear problems, not 
 potential, ones 

 There are places where regulation will benefit both the regulated 
 entities and the consumer, though it is challenging to mitigate 
 unintended consequences. 

 6. Update laws with data science & 
 technology in mind 

 Data science applications may be challenged to interpret existing 
 laws. Also, existing laws may not be intended to be mechanistically 
 applied. 

 7. Consider the impacts of economies 
 of scale and the virtuous cycle 

 Recognizing that data science and technology catalyze scale, careful 
 thought is needed to balance benefits and risks. 

 8. Create independent, consensus 
 building institutions for difficult 
 problems 

 New organizations to lead the standardization of terminology, 
 technology, and policy, to create repositories of trusted, reusable 
 content, and to do measurement and compliance testing. They might 
 help organizations self-regulate and help achieve societal consensus. 

 9. Increase focused and 
 transdisciplinary research 

 Based on its track record, many of data science's challenges will be 
 solved by great research. 

 10. Foster innovation  Continuing innovation will bring many valuable data science 
 capabilities to fruition. 

 11. Apply the analysis rubric to 
 improve data science results. 

 Careful attention to the breadth of data science problems will make 
 for better quality solutions. 

 12. Scrutinize results and be truthful  Data scientists must be self-critical and very careful to tell the truth. 

 13. Use data science to explain 
 alternatives 

 Given that the technical aspect of a new product addresses only a 
 part of a human need, and that a new technical research result 
 provides only a part of a larger answer, data scientists should 
 illustrate alternatives so that decision makers can weigh alternatives. 

 14. Create organizational approaches 
 for principled decision-making 

 Practicing ethical decision-making is difficult; organizations should 
 create structures and mechanisms that foster the application of 
 ethical principles. 
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